def predict(self, x_test): if self.verbose > 0: print("[{}] Predicting data of {}".format(self.name, x_test.shape)) start_time = time.time() model_path = self.output_directory + 'best_model.hdf5' model = keras.models.load_model(model_path) y_pred = model.predict(x_test, batch_size=self.batch_size) # if return_df_metrics: # y_pred = np.argmax(y_pred, axis=1) # df_metrics = calculate_metrics(y_true, y_pred, 0.0) # return df_metrics # else: # test_duration = time.time() - start_time # save_test_duration(self.output_directory + 'test_duration.csv', test_duration) # return y_pred test_duration = time.time() - start_time save_test_duration(self.output_directory + 'test_duration.csv', test_duration) if self.verbose > 0: print("[{}] Predicting completed, took {}s".format( self.name, test_duration)) return y_pred, test_duration
def predict(self, x: np.array): """ Do prediction using the regression model on x Inputs: x: data for prediction (num_examples, num_timestep, num_channels) or (num_examples, num_features) """ print("[{}] Predicting data of {}".format(self.name, x.shape)) start_time = time.perf_counter() if len(x.shape) == 3: x = x.reshape(x.shape[0], x.shape[1] * x.shape[2]) y_pred = self.model.predict(x) test_duration = time.perf_counter() - start_time save_test_duration(self.output_directory + 'test_duration.csv', test_duration) print("[{}] Predicting completed, took {}s".format( self.name, test_duration)) return y_pred
def predict(self, x): print('[{}] Predicting'.format(self.name)) start_time = time.perf_counter() print('[{}] Applying kernels'.format(self.name)) x_test_transform = apply_kernels(x, self.kernels) y_pred = self.regressor.predict(x_test_transform) test_duration = time.perf_counter() - start_time save_test_duration(self.output_directory + 'test_duration.csv', test_duration) print("[{}] Predicting completed, took {}s".format( self.name, test_duration)) return y_pred
def predict(self, x): print('[{}] Predicting'.format(self.name)) start_time = time.perf_counter() model = tf.keras.models.load_model(self.output_directory + self.best_model_file) yhat = model.predict(x) tf.keras.backend.clear_session() test_duration = time.perf_counter() - start_time save_test_duration(self.output_directory + 'test_duration.csv', test_duration) print('[{}] Prediction done!'.format(self.name)) return yhat
def predict(self, x_test): print("[{}] Predicting data of {}".format(self.name, x_test.shape)) start_time = time.perf_counter() if len(x_test.shape) == 3: x_test = x_test.reshape(x_test.shape[0], x_test.shape[1] * x_test.shape[2]) y_pred = self.model.predict(x_test) test_duration = time.perf_counter() - start_time save_test_duration(self.output_directory + 'test_duration.csv', test_duration) print("[{}] Predicting completed, took {}s".format(self.name, test_duration)) return y_pred
def predict(self, x_test): if self.verbose > 0: print("[{}] Predicting data of {}".format(self.name, x_test.shape)) start_time = time.time() model_path = self.output_directory + 'best_model.hdf5' model = keras.models.load_model(model_path) y_pred = model.predict(x_test) test_duration = time.time() - start_time self.test_duration = test_duration save_test_duration(self.output_directory + 'test_duration.csv', test_duration) if self.verbose > 0: print("[{}] Predicting completed, took {}s".format(self.name, test_duration)) return y_pred, test_duration
def predict(self, x_test): if self.verbose > 0: print("[{}] Predicting data of {}".format(self.name, x_test.shape)) start_time = time.time() y_pred = self.model.predict(x_test) test_duration = time.time() - start_time save_test_duration(self.output_directory + 'test_duration.csv', test_duration) self.test_duration = test_duration if self.verbose > 0: print("[{}] Predicting completed, took {}s".format( self.name, test_duration)) return y_pred, test_duration
def predict(self, x): """ Do prediction with DL models Inputs: x: data for prediction (num_examples, num_timestep, num_channels) Outputs: y_pred: prediction """ print('[{}] Predicting'.format(self.name)) start_time = time.perf_counter() model = tf.keras.models.load_model(self.output_directory + self.best_model_file) yhat = model.predict(x) tf.keras.backend.clear_session() test_duration = time.perf_counter() - start_time save_test_duration(self.output_directory + 'test_duration.csv', test_duration) print('[{}] Prediction done!'.format(self.name)) return yhat