Example #1
0
 def __get_image_information(single_line):
     line_string = bytes.decode(single_line.numpy(), encoding="utf-8")
     line_list = line_string.strip().split(" ")
     image_file, image_height, image_width = line_list[:3]
     image_height, image_width = str_to_int(image_height), str_to_int(
         image_width)
     boxes = []
     num_of_boxes = (len(line_list) - 3) / 5
     if int(num_of_boxes) == num_of_boxes:
         num_of_boxes = int(num_of_boxes)
     else:
         raise ValueError("num_of_boxes must be 'int'.")
     for index in range(num_of_boxes):
         if index < MAX_BOXES_PER_IMAGE:
             xmin = str_to_int(line_list[3 + index * 5])
             ymin = str_to_int(line_list[3 + index * 5 + 1])
             xmax = str_to_int(line_list[3 + index * 5 + 2])
             ymax = str_to_int(line_list[3 + index * 5 + 3])
             class_id = int(line_list[3 + index * 5 + 4])
             xmin, ymin, xmax, ymax = resize_box(image_height, image_width,
                                                 xmin, ymin, xmax, ymax)
             boxes.append([xmin, ymin, xmax, ymax, class_id])
     num_padding_boxes = MAX_BOXES_PER_IMAGE - num_of_boxes
     if num_padding_boxes > 0:
         for i in range(num_padding_boxes):
             boxes.append([0, 0, 0, 0, -1])
     boxes_array = np.array(
         boxes, dtype=np.float32)  # shape: (MAX_BOXES_PER_IMAGE, 5)
     return image_file, boxes_array
Example #2
0
 def __process_coord(self, x_min, y_min, x_max, y_max):
     x_min = str_to_int(x_min)
     y_min = str_to_int(y_min)
     x_max = str_to_int(x_max)
     y_max = str_to_int(y_max)
     return int(x_min), int(y_min), int(x_max), int(y_max)