def print_metrics(model, train_dataset, test_dataset, train_result): model.train(False) test_preds = train_utils.get_preds(test_dataset.data[:, 1:], model) test_AUC = train_utils.compute_AUC(test_dataset.data[:, :1], test_preds) test_PRAUC = train_utils.compute_PRAUC(test_dataset.data[:, :1], test_preds) test_accuracy = train_utils.compute_accuracy(test_dataset.data[:, :1], test_preds) test_TP, test_TN, test_FN, test_FP = train_utils.compute_confusion(test_dataset.data[:, :1], test_preds) train_preds = train_utils.get_preds(train_dataset.data[:1000, 1:], model) train_AUC = train_utils.compute_AUC(train_dataset.data[:1000, :1], train_preds) train_PRAUC = train_utils.compute_PRAUC(train_dataset.data[:1000, :1], train_preds) train_accuracy = train_utils.compute_accuracy(train_dataset.data[:1000, :1], train_preds) train_result.test_AUC_list.append("%.04f" % test_AUC) train_result.test_PRAUC_list.append("%.04f" % test_PRAUC) train_result.test_accuracy_list.append("%.04f" % test_accuracy) train_result.test_TP_list.append("%.04f" %test_TP) train_result.test_TP_list.append("%.04f" %test_TN) train_result.test_TP_list.append("%.04f" %test_FN) train_result.test_TP_list.append("%.04f" %test_FP) return train_AUC, test_AUC, test_PRAUC, train_accuracy, test_accuracy, test_preds, test_TP, test_TN, test_FN, test_FP
def train(info: TrainInformation, split, fold): """주어진 split에 대한 학습과 테스트를 진행한다.""" bs = info.BS init_lr = info.INIT_LR lr_decay = info.LR_DECAY momentum = info.MOMENTUM weight_decay = info.WEIGHT_DECAY optimizer_method = info.OPTIMIZER_METHOD epoch = info.EPOCH nchs = info.NCHS filename = info.FILENAME model_name = info.MODEL_NAME exp_name = info.NAME print("Using File {}".format(filename)) train_dataset = Dataset(split=split, fold=fold, phase="train", filename=filename, use_data_dropout=info.USE_DATA_DROPOUT) #val_dataset = Dataset(split=split, fold=fold, phase="val", filename=filename) test_dataset = Dataset(split=split, fold=fold, phase="test", filename=filename, use_data_dropout=False) model = get_classifier_model(model_name, train_dataset.feature_size, nchs, info.ACTIVATION) print(model) # Optimizer 설정 optimizer = set_optimizer( optimizer_method, model, init_lr, weight_decay, momentum=momentum ) data_loader = torch.utils.data.DataLoader( train_dataset, batch_size=bs, shuffle=True, num_workers=0, drop_last=True ) bce_loss = torch.nn.BCEWithLogitsLoss().cuda() train_result = TrainResult() train_result.set_sizes( len(train_dataset.data), 0, len(test_dataset.data) ) for ep in range(epoch): global prev_plot prev_plot = 0 train_step( exp_name, ep, model, train_dataset, test_dataset, optimizer, init_lr, lr_decay, data_loader, bce_loss, train_result, ) savedir = "/content/drive/My Drive/research/frontiers/checkpoints/%s" % exp_name best_test_epoch = train_result.best_test_epoch #25 savepath = "%s/epoch_%04d_fold_%02d.pt" % (savedir, best_test_epoch, train_dataset.split) #model.load_state_dict(torch.load(savepath)) model = torch.load(savepath) model.eval() test_preds = train_utils.get_preds(test_dataset.data[:, 1:], model) test_AUC = train_utils.compute_AUC(test_dataset.data[:, :1], test_preds) test_PRAUC = train_utils.compute_PRAUC(test_dataset.data[:, :1], test_preds) train_utils.plot_AUC(test_dataset, test_preds, test_AUC, savepath=savepath.replace(".pt", "_AUC.tiff")) contributing_variables = compute_contributing_variables(model, test_dataset) with open(os.path.join(savedir, "contributing_variables_epoch_%04d_fold_%02d.txt" % (best_test_epoch, train_dataset.split)), "w") as f: for (v, auc) in contributing_variables: f.write("%s %f\n" % (v, auc)) info.split_index = split info.result_dict = train_result info.save_result() return train_result