Example #1
0
def main(args):
    print('===================================\n', )
    print("Root directory: {}".format(args.name))
    args.exp_dir = os.path.join(RES_DIR, args.name)
    if not os.path.isdir(args.exp_dir):
        os.makedirs(args.exp_dir)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    args.device = device

    train_logger = make_logger("Train.log", args)
    test_logger = make_logger("Test.log", args)

    model = load_models(
        mode="cls",
        device=device,
        args=args,
    )

    optimizer = optim.Adam(
        model.parameters(),
        lr=args.lr,
        betas=(0.9, 0.999),
    )
    optimizer.zero_grad()

    if args.tensorboard:
        writer = SummaryWriter(args.exp_dir)
    else:
        writer = None

    if (args.train or args.run_semi) and args.test:
        print("===================================")
        print("====== Loading Training Data ======")
        print("===================================")

        sample_gt_list = np.load(args.gt_sample_list)

        trainset_gt = ModelNetDatasetGT(
            root_list=args.train_file,
            sample_list=sample_gt_list,
        )

        trainloader_gt = torch.utils.data.DataLoader(
            trainset_gt,
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=args.workers,
            pin_memory=True,
        )

        print("===================================")
        print("====== Loading Test Data ======")
        print("===================================")
        testset = ModelNetDatasetGT(
            root_list=args.test_file,
            sample_list=None,
        )
        testloader = torch.utils.data.DataLoader(
            testset,
            batch_size=args.batch_size,
            shuffle=False,
            num_workers=args.workers,
            pin_memory=True,
        )

        args.iter_per_epoch = int(trainset_gt.__len__() / args.batch_size)
        args.total_data = trainset_gt.__len__()
        args.total_iterations = int(args.num_epochs * args.total_data /
                                    args.batch_size)
        args.iter_save_epoch = args.save_per_epoch * int(
            args.total_data / args.batch_size)
        args.iter_test_epoch = args.test_epoch * int(
            args.total_data / args.batch_size)

    if args.train and args.test:
        model.train()
        model.to(args.device)

        cls_loss = torch.nn.CrossEntropyLoss().to(device)

        trainloader_gt_iter = enumerate(trainloader_gt)

        run_training_pointnet_cls(
            trainloader_gt=trainloader_gt,
            trainloader_gt_iter=trainloader_gt_iter,
            testloader=testloader,
            model=model,
            cls_loss=cls_loss,
            optimizer=optimizer,
            writer=writer,
            train_logger=train_logger,
            test_logger=test_logger,
            args=args,
        )

    if args.test:
        print("===================================")
        print("====== Loading Testing Data =======")
        print("===================================")
        testset = ModelNetDatasetGT(
            root_list=args.test_file,
            sample_list=None,
        )
        testloader = torch.utils.data.DataLoader(
            testset,
            batch_size=args.batch_size,
            shuffle=False,
            num_workers=args.workers,
            pin_memory=True,
        )
        criterion = torch.nn.CrossEntropyLoss().to(device)

        run_testing(
            dataloader=testloader,
            model=model,
            criterion=criterion,
            logger=test_logger,
            test_iter=100000000,
            writer=None,
            args=args,
        )
def main(args):
    print('===================================\n', )
    print("Root directory: {}".format(args.name))
    args.exp_dir = os.path.join(RES_DIR, args.name)
    if not os.path.isdir(args.exp_dir):
        os.makedirs(args.exp_dir)
    print("EXP PATH: {}".format(args.exp_dir))

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    args.device = device

    logger = make_logger(filename="TrainVal.log", args=args)
    if args.tensorboard:
        writer = SummaryWriter(args.exp_dir)
    else:
        writer = None

    print("===================================")
    print("====== Loading Training Data ======")
    print("===================================")
    shape_transformer = dual_transforms.Compose([
        dual_transforms.CenterCrop((400, 400)),
        dual_transforms.Scale(args.image_size[0]),
    ])

    photo_transformer = PhotometricTransform(photometric_transform_config)

    joint_data = JointDataset(
        root_source=args.source_root,
        image_size=args.image_size,
        data_to_train="dataloaders/eye/trinity_train_200.pkl",
        shape_transforms=shape_transformer,
        photo_transforms=photo_transformer,
        train_bool=False,
    )

    args.tot_data = joint_data.__len__()
    args.total_iterations = args.num_epochs * args.tot_data // args.batch_size
    args.iters_to_eval = args.epoch_to_eval * args.tot_data // args.batch_size

    print("===================================")
    print("========= Loading Val Data ========")
    print("===================================")
    val_target_data = OpenEDSDataset_withLabels(
        root=os.path.join(args.target_root, "validation"),
        image_size=args.image_size,
        data_to_train="",
        shape_transforms=shape_transformer,
        photo_transforms=None,
        train_bool=False,
    )

    train_loader = torch.utils.data.DataLoader(
        joint_data,
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.workers,
        pin_memory=True,
    )

    val_loader = torch.utils.data.DataLoader(
        val_target_data,
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.workers,
        pin_memory=True,
    )

    model_seg = load_models(
        mode="segmentation",
        device=device,
        args=args,
    )
    optimizer_seg = optim.Adam(
        model_seg.parameters(),
        lr=args.lr_seg,
        betas=(args.beta1, 0.999),
    )
    optimizer_seg.zero_grad()

    # class_weight_target = 1.0 / train_target_data.get_class_probability().to(device)
    seg_loss_target = torch.nn.CrossEntropyLoss().to(device)

    trainloader_iter = enumerate(train_loader)

    val_loss, val_miou = [], []
    val_loss_f = float("inf")
    val_miou_f = float("-inf")
    loss_seg_min = float("inf")

    for i_iter in range(args.total_iterations):
        loss_seg_value = 0
        model_seg.train()
        optimizer_seg.zero_grad()

        adjust_learning_rate(
            optimizer=optimizer_seg,
            learning_rate=args.lr_seg,
            i_iter=i_iter,
            max_steps=args.total_iterations,
            power=0.9,
        )

        try:
            _, batch = next(trainloader_iter)
        except StopIteration:
            trainloader_iter = enumerate(train_loader)
            _, batch = next(trainloader_iter)

        images, labels = batch
        images = Variable(images).to(args.device)
        labels = Variable(labels.long()).to(args.device)

        pred = model_seg(images)
        loss_seg = seg_loss_target(pred, labels)

        current_loss_seg = loss_seg.item()
        loss_seg_value += current_loss_seg

        loss_seg.backward()
        optimizer_seg.step()

        logger.info('iter = {0:8d}/{1:8d} '
                    'loss_seg = {2:.3f} '.format(
                        i_iter,
                        args.total_iterations,
                        loss_seg_value,
                    ))

        current_epoch = i_iter * args.batch_size // args.tot_data
        if i_iter % args.iters_to_eval == 0:
            val_loss_f, val_miou_f = validate_baseline(
                i_iter=i_iter,
                val_loader=val_loader,
                model=model_seg,
                epoch=current_epoch,
                logger=logger,
                writer=writer,
                val_loss=val_loss_f,
                val_iou=val_miou_f,
                args=args,
            )

            val_loss.append(val_loss_f)
            val_loss_f = np.min(np.array(val_loss))
            val_miou.append(val_miou_f)
            val_miou_f = np.max(np.array(val_miou))

            if args.tensorboard and (writer != None):
                writer.add_scalar('Val/Cross_Entropy_Target', val_loss_f,
                                  i_iter)
                writer.add_scalar('Val/mIoU_Target', val_miou_f, i_iter)

        is_better_ss = current_loss_seg < loss_seg_min
        if is_better_ss:
            loss_seg_min = current_loss_seg
            torch.save(model_seg.state_dict(),
                       os.path.join(args.exp_dir, "model_train_best.pth"))

    logger.info("==========================================")
    logger.info("Training DONE!")

    if args.tensorboard and (writer != None):
        writer.close()

    with open("%s/train_performance.pkl" % args.exp_dir, "wb") as f:
        pickle.dump([val_loss, val_miou], f)
    logger.info("==========================================")
    logger.info("Evaluating on test data ...")

    testdata = OpenEDSDataset_withLabels(
        root=os.path.join(args.target_root, "test"),
        image_size=args.image_size,
        data_to_train="",
        shape_transforms=shape_transformer,
        photo_transforms=None,
        train_bool=False,
    )
    test_loader = torch.utils.data.DataLoader(
        testdata,
        batch_size=1,
        shuffle=False,
        num_workers=0,
        pin_memory=True,
    )

    pm = run_testing(
        dataset=testdata,
        test_loader=test_loader,
        model=model_seg,
        args=args,
    )

    logger.info('Global Mean Accuracy: {:.3f}'.format(np.array(pm.GA).mean()))
    logger.info('Mean IOU: {:.3f}'.format(np.array(pm.IOU).mean()))
    logger.info('Mean Recall: {:.3f}'.format(np.array(pm.Recall).mean()))
    logger.info('Mean Precision: {:.3f}'.format(np.array(pm.Precision).mean()))
    logger.info('Mean F1: {:.3f}'.format(np.array(pm.F1).mean()))

    IOU_ALL = np.array(pm.Iou_all)
    logger.info(
        "Back: {:.4f}, Sclera: {:.4f}, Iris: {:.4f}, Pupil: {:.4f}".format(
            IOU_ALL[:, 0].mean(),
            IOU_ALL[:, 1].mean(),
            IOU_ALL[:, 2].mean(),
            IOU_ALL[:, 3].mean(),
        ))
Example #3
0
def main(args):
    print('===================================\n', )
    print("Root directory: {}".format(args.name))
    args.exp_dir = os.path.join(RES_DIR, args.name)
    if not os.path.isdir(args.exp_dir):
        os.makedirs(args.exp_dir)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    args.device = device

    train_logger = make_logger("Train.log", args)
    test_logger = make_logger("Test.log", args)

    model = load_models(
        mode="cls",
        device=device,
        args=args,
    )
    model_D = load_models(
        mode="disc",
        device=device,
        args=args,
    )

    optimizer = optim.Adam(
        model.parameters(),
        lr=args.lr,
        betas=(0.9, 0.999),
    )
    optimizer.zero_grad()

    optimizer_D = optim.Adam(
        model_D.parameters(),
        lr=args.lr_D,
        betas=(0.9, 0.999),
    )
    optimizer_D.zero_grad()

    if args.tensorboard:
        writer = SummaryWriter(args.exp_dir)
    else:
        writer = None

    if (args.train or args.run_semi) and args.test:
        print("===================================")
        print("====== Loading Training Data ======")
        print("===================================")
        # idx = np.arange(9840)
        # np.random.shuffle(idx)
        # sample_gt_list = idx[0:args.num_samples]
        # sample_nogt_list = idx[args.num_samples:]
        # filename = "gt_sample_{}.npy".format(args.name)
        # np.save(filename, sample_gt_list)

        sample_gt_list = np.load(args.gt_sample_list)

        trainset_gt = ModelNetDatasetGT(
            root_list=args.train_file,
            sample_list=sample_gt_list,
        )
        trainset_nogt = ModelNetDataset_noGT(
            root_list=args.train_file,
            sample_list=sample_gt_list,
        )

        trainloader_gt = torch.utils.data.DataLoader(
            trainset_gt,
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=args.workers,
            pin_memory=True,
        )
        trainloader_nogt = torch.utils.data.DataLoader(
            trainset_nogt,
            batch_size=args.batch_size,
            shuffle=True,
            num_workers=args.workers,
            pin_memory=True,
        )

        print("===================================")
        print("====== Loading Test Data ======")
        print("===================================")
        testset = ModelNetDatasetGT(
            root_list=args.test_file,
            sample_list=None,
        )
        testloader = torch.utils.data.DataLoader(
            testset,
            batch_size=args.batch_size,
            shuffle=False,
            num_workers=args.workers,
            pin_memory=True,
        )

        args.iter_per_epoch = int(1.0 * trainset_gt.__len__() / args.batch_size)
        args.total_data = trainset_gt.__len__() + trainset_nogt.__len__()
        args.total_iterations = int(args.num_epochs *
                                    args.total_data / args.batch_size)
        args.iter_save_epoch = args.save_per_epoch * int(args.total_data / args.batch_size)
        args.iter_test_epoch = args.test_epoch * int(args.total_data / args.batch_size)
        args.semi_start = int(args.semi_start_epoch *
                              args.total_data / args.batch_size)

    if args.train and args.test:
        model.train()
        model_D.train()

        model.to(args.device)
        model_D.to(args.device)

        #class_weight = 1.0 / trainset_gt.get_class_probability().to(device)

        cls_loss = torch.nn.CrossEntropyLoss().to(device)
        gan_loss = torch.nn.BCEWithLogitsLoss().to(device)
        semi_loss = torch.nn.CrossEntropyLoss(ignore_index=255)

        history_pool_gt = ImagePool(args.pool_size)
        history_pool_nogt = ImagePool(args.pool_size)

        trainloader_gt_iter = enumerate(trainloader_gt)
        targetloader_nogt_iter = enumerate(trainloader_nogt)


        if args.semi_start_epoch==0:
            run_training(
                trainloader_gt=trainloader_gt,
                trainloader_nogt=trainloader_nogt,
                trainloader_gt_iter=trainloader_gt_iter,
                targetloader_nogt_iter=targetloader_nogt_iter,
                testloader=testloader,
                model=model,
                model_D=model_D,
                gan_loss=gan_loss,
                cls_loss=cls_loss,
                optimizer=optimizer,
                optimizer_D=optimizer_D,
                history_pool_gt=history_pool_gt,
                history_pool_nogt=history_pool_nogt,
                writer=writer,
                train_logger=train_logger,
                test_logger=test_logger,
                args=args,
            )
        else:
            run_training_semi(
                trainloader_gt=trainloader_gt,
                trainloader_nogt=trainloader_nogt,
                trainloader_gt_iter=trainloader_gt_iter,
                targetloader_nogt_iter=targetloader_nogt_iter,
                testloader=testloader,
                model=model,
                model_D=model_D,
                gan_loss=gan_loss,
                cls_loss=cls_loss,
                semi_loss=semi_loss,
                optimizer=optimizer,
                optimizer_D=optimizer_D,
                history_pool_gt=history_pool_gt,
                history_pool_nogt=history_pool_nogt,
                writer=writer,
                train_logger=train_logger,
                test_logger=test_logger,
                args=args,
            )

    if args.test:
        print("===================================")
        print("====== Loading Testing Data =======")
        print("===================================")
        testset = ModelNetDatasetGT(
            root_list=args.test_file,
            sample_list=None,
        )
        testloader = torch.utils.data.DataLoader(
            testset,
            batch_size=args.batch_size,
            shuffle=False,
            num_workers=args.workers,
            pin_memory=True,
        )
        criterion = torch.nn.CrossEntropyLoss().to(device)

        run_testing(
            dataloader=testloader,
            model=model,
            criterion=criterion,
            logger=test_logger,
            test_iter=100000000,
            writer=None,
            args=args,
        )
Example #4
0
def main(args):
    print('===================================\n', )
    print("Root directory: {}".format(args.name))
    args.exp_dir = os.path.join(RES_DIR, args.name)
    if not os.path.isdir(args.exp_dir):
        os.makedirs(args.exp_dir)
    print("EXP PATH: {}".format(args.exp_dir))

    assert args.trinity_data_train_with_labels != "", "Indicate trained data in Trinity!"

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    args.device = device

    logger = make_logger(filename="TrainVal.log", args=args)
    if args.tensorboard:
        writer = SummaryWriter(args.exp_dir)
    else:
        writer = None

    print("===================================")
    print("====== Loading Training Data ======")
    print("===================================")

    transforms_shape_source = dual_transforms.Compose([
        dual_transforms.CenterCrop((400, 400)),
        dual_transforms.Scale(args.image_size[0]),
    ])

    transforms_shape_target = dual_transforms.Compose([
        dual_transforms.CenterCrop((400, 400)),
        dual_transforms.Scale(args.image_size[0]),
    ])

    photo_transformer = PhotometricTransform(photometric_transform_config)

    source_data = UnityDataset(
        root=args.source_root,
        image_size=args.image_size,
        shape_transforms=transforms_shape_source,
        photo_transforms=photo_transformer,
        train_bool=False,
    )

    target_data = OpenEDSDataset_withLabels(
        root=os.path.join(args.target_root, "train"),
        image_size=args.image_size,
        data_to_train=args.trinity_data_train_with_labels,
        shape_transforms=transforms_shape_target,
        photo_transforms=photo_transformer,
        train_bool=False,
    )

    args.tot_source = source_data.__len__()
    args.total_iterations = args.num_epochs * source_data.__len__(
    ) // args.batch_size
    args.iters_to_eval = args.epoch_to_eval * source_data.__len__(
    ) // args.batch_size
    args.iter_source_to_eval = args.epoch_to_eval_source * source_data.__len__(
    ) // args.batch_size
    args.iter_semi_start = args.epoch_semi_start * source_data.__len__(
    ) // args.batch_size

    print("===================================")
    print("========= Loading Val Data ========")
    print("===================================")
    val_target_data = OpenEDSDataset_withLabels(
        root=os.path.join(args.target_root, "validation"),
        image_size=args.image_size,
        data_to_train="",
        shape_transforms=transforms_shape_target,
        photo_transforms=None,
        train_bool=False,
    )
    # class_weight_source = 1.0 / source_data.get_class_probability().to(device)

    source_loader = torch.utils.data.DataLoader(
        source_data,
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.workers,
        pin_memory=True,
    )
    target_loader = torch.utils.data.DataLoader(
        target_data,
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.workers,
        pin_memory=True,
    )
    val_loader = torch.utils.data.DataLoader(
        val_target_data,
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.workers,
        pin_memory=True,
    )

    model_seg = load_models(
        mode="segmentation",
        device=device,
        args=args,
    )

    model_disc = load_models(
        mode="single_discriminator",
        device=device,
        args=args,
    )

    optimizer_seg = optim.Adam(
        model_seg.parameters(),
        lr=args.lr_seg,
        betas=(args.beta1, 0.999),
    )
    optimizer_seg.zero_grad()

    optimizer_disc = torch.optim.Adam(
        model_disc.parameters(),
        lr=args.lr_disc,
        betas=(args.beta1, 0.999),
    )
    optimizer_disc.zero_grad()

    seg_loss_source = torch.nn.CrossEntropyLoss().to(device)
    gan_loss = torch.nn.BCEWithLogitsLoss().to(device)
    semi_loss = torch.nn.CrossEntropyLoss(ignore_index=-1)

    history_true_mask = ImagePool(args.pool_size)
    history_fake_mask = ImagePool(args.pool_size)

    trainloader_iter = enumerate(source_loader)
    targetloader_iter = enumerate(target_loader)

    val_loss, val_miou = run_training_SSDA(
        trainloader_source=source_loader,
        trainloader_target=target_loader,
        trainloader_iter=trainloader_iter,
        targetloader_iter=targetloader_iter,
        val_loader=val_loader,
        model_seg=model_seg,
        model_disc=model_disc,
        gan_loss=gan_loss,
        seg_loss=seg_loss_source,
        semi_loss_criterion=semi_loss,
        optimizer_seg=optimizer_seg,
        optimizer_disc=optimizer_disc,
        history_pool_true=history_true_mask,
        history_pool_fake=history_fake_mask,
        logger=logger,
        writer=writer,
        args=args,
    )

    with open("%s/train_performance.pkl" % args.exp_dir, "wb") as f:
        pickle.dump([val_loss, val_miou], f)

    logger.info("==========================================")
    logger.info("Evaluating on test data ...")

    testdata = OpenEDSDataset_withLabels(
        root=os.path.join(args.target_root, "test"),
        image_size=args.image_size,
        data_to_train="",
        shape_transforms=transforms_shape_target,
        photo_transforms=None,
        train_bool=False,
    )
    test_loader = torch.utils.data.DataLoader(
        testdata,
        batch_size=1,
        shuffle=False,
        num_workers=0,
        pin_memory=True,
    )

    pm = run_testing(
        dataset=testdata,
        test_loader=test_loader,
        model=model_seg,
        args=args,
    )

    logger.info('Global Mean Accuracy: {:.3f}'.format(np.array(pm.GA).mean()))
    logger.info('Mean IOU: {:.3f}'.format(np.array(pm.IOU).mean()))
    logger.info('Mean Recall: {:.3f}'.format(np.array(pm.Recall).mean()))
    logger.info('Mean Precision: {:.3f}'.format(np.array(pm.Precision).mean()))
    logger.info('Mean F1: {:.3f}'.format(np.array(pm.F1).mean()))

    IOU_ALL = np.array(pm.Iou_all)
    logger.info(
        "Back: {:.4f}, Sclera: {:.4f}, Iris: {:.4f}, Pupil: {:.4f}".format(
            IOU_ALL[:, 0].mean(),
            IOU_ALL[:, 1].mean(),
            IOU_ALL[:, 2].mean(),
            IOU_ALL[:, 3].mean(),
        ))
Example #5
0
def main(args):
    print('===================================\n', )
    print("Root directory: {}".format(args.name))
    args.exp_dir = os.path.join(RES_DIR, args.name)
    if not os.path.isdir(args.exp_dir):
        os.makedirs(args.exp_dir)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    args.device = device

    test_logger = make_logger("Test.log", args)

    model = load_models(
        mode="cls",
        device=device,
        args=args,
    )
    # model_D = load_models(
    #     mode="disc",
    #     device=device,
    #     args=args,
    # )

    optimizer = optim.Adam(
        model.parameters(),
        lr=args.lr,
        betas=(0.9, 0.999),
    )
    optimizer.zero_grad()

    #optimizer_D = optim.Adam(
    #     model_D.parameters(),
    #     lr=args.lr_D,
    #     betas=(0.9, 0.999),
    # )
    # optimizer_D.zero_grad()

    if args.tensorboard:
        writer = SummaryWriter(args.exp_dir)
    else:
        writer = None

    print("===================================")
    print("====== Loading Testing Data =======")
    print("===================================")
    testset = ModelNetDatasetGT(
        root_list=args.test_file,
        sample_list=None,
    )
    testloader = torch.utils.data.DataLoader(
        testset,
        batch_size=args.batch_size,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=True,
    )
    criterion = torch.nn.CrossEntropyLoss().to(device)

    train_pth = glob.glob(args.exp_dir + "/model_train_epoch_*.pth")
    print("Total #models: {}".format(len(train_pth)))

    max_accu = float("-inf")
    for i in range(len(train_pth)):
        print("Processing {} .....".format(i))
        print("model {} .........".format(train_pth[i]))
        model.load_state_dict(torch.load(train_pth[i]))

        curr_accu, curr_loss = run_testing(
            dataloader=testloader,
            model=model,
            criterion=criterion,
            logger=test_logger,
            test_iter=100000000,
            writer=None,
            args=args,
        )

        if curr_accu > max_accu:
            max_accu = curr_accu
            max_pth = train_pth[i]

    print("Max accuracy: {:.4f}".format(max_accu))
    print("Trained model: {}".format(max_pth))
def main(args):
    print('===================================\n', )
    print("Root directory: {}".format(args.name))
    args.exp_dir = os.path.join(os.path.join(RES_DIR, args.name),
                                "evaluation_trinity_test")
    if not os.path.isdir(args.exp_dir):
        os.makedirs(args.exp_dir)
    print("EXP PATH: {}".format(args.exp_dir))

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    args.device = device

    transforms_shape_target = dual_transforms.Compose([
        dual_transforms.CenterCrop((400, 400)),
        dual_transforms.Scale(args.image_size[0]),
    ])

    testdata = OpenEDSDataset_withLabels(
        root=os.path.join(args.target_root, "test"),
        image_size=args.image_size,
        data_to_train="",
        shape_transforms=transforms_shape_target,
        photo_transforms=None,
        train_bool=False,
    )
    test_loader = torch.utils.data.DataLoader(
        testdata,
        batch_size=1,
        shuffle=False,
        num_workers=0,
        pin_memory=True,
    )

    assert args.checkpoint_seg is not None, "Need trained .pth!"
    model_seg = load_models(
        mode="segmentation",
        device=device,
        args=args,
    )

    print("Evaluating ...................")
    miou_all, iou_all = run_testing(
        dataset=testdata,
        test_loader=test_loader,
        model=model_seg,
        args=args,
    )

    # print('Global Mean Accuracy: {:.3f}'.format(np.array(pm.GA).mean()))
    # print('Mean IOU: {:.3f}'.format(np.array(pm.IOU).mean()))
    # print('Mean Recall: {:.3f}'.format(np.array(pm.Recall).mean()))
    # print('Mean Precision: {:.3f}'.format(np.array(pm.Precision).mean()))
    # print('Mean F1: {:.3f}'.format(np.array(pm.F1).mean()))()

    print('Mean IOU: {:.3f}'.format(miou_all.mean()))
    print("Back: {:.4f}, Sclera: {:.4f}, Iris: {:.4f}, Pupil: {:.4f}".format(
        iou_all[:, 0].mean(),
        iou_all[:, 1].mean(),
        iou_all[:, 2].mean(),
        iou_all[:, 3].mean(),
    ))