Example #1
0
def test(args):
    model = MIRNet()

    # summary(model,[[3,128,128],[0]])
    # exit()
    checkpoint_dir = args.checkpoint
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # try:
    checkpoint = load_checkpoint(checkpoint_dir, device == 'cuda', 'latest')
    start_epoch = checkpoint['epoch']
    global_step = checkpoint['global_iter']
    state_dict = checkpoint['state_dict']
    model.load_state_dict(state_dict)
    print('=> loaded checkpoint (epoch {}, global_step {})'.format(
        start_epoch, global_step))
    # except:
    #     print('=> no checkpoint file to be loaded.')    # model.load_state_dict(state_dict)
    #     exit(1)
    model.eval()
    model = model.to(device)
    trans = transforms.ToPILImage()
    torch.manual_seed(0)
    # noisy_path = sorted(glob.glob(args.noise_dir+ "/*.png"))
    test_img = glob.glob(
        "/vinai/tampm2/cityscapes_noise/gtFine/val/*/*_gtFine_color.png")
    if not os.path.exists(args.save_img):
        os.makedirs(args.save_img)
    for i in range(len(test_img)):
        # print(noisy_path[i])
        img_path = os.path.join(
            args.noise_dir,
            test_img[i].split("/")[-1].replace("_gtFine_color",
                                               "_leftImg8bit"))
        print(img_path)
        image_noise = load_data(img_path)
        image_noises1 = split_tensor(image_noise)
        preds1 = []
        for image1 in image_noises1:
            image1 = image1.unsqueeze(0)
            image_noises2 = split_tensor(image1)
            preds2 = []
            for image2 in image_noises2:
                image2 = image2.unsqueeze(0)
                image_noises3 = split_tensor(image2)
                preds3 = []
                for image3 in image_noises3:
                    image3 = image3.unsqueeze(0).to(device)
                    print(image3.size())
                    pred3 = model(image3)
                    pred3 = pred3.detach().cpu().squeeze(0)
                    preds3.append(pred3)

                pred2 = merge_tensor(preds3)
                preds2.append(pred2)
            pred1 = merge_tensor(preds2)
            preds1.append(pred1)
        pred = merge_tensor(preds1)
        pred = trans(pred)
        name_img = img_path.split("/")[-1].split(".")[0]
        pred.save(args.save_img + "/" + name_img + ".png")
Example #2
0
def test(args):
    model = MIRNet()

    checkpoint_dir = args.checkpoint
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # try:
    checkpoint = load_checkpoint(checkpoint_dir, device == 'cuda', 'latest')
    start_epoch = checkpoint['epoch']
    global_step = checkpoint['global_iter']
    state_dict = checkpoint['state_dict']
    model.load_state_dict(state_dict)
    print('=> loaded checkpoint (epoch {}, global_step {})'.format(
        start_epoch, global_step))
    model.eval()
    model = model.to(device)
    trans = transforms.ToPILImage()
    torch.manual_seed(0)
    all_noisy_imgs = scipy.io.loadmat(
        args.noise_dir)['BenchmarkNoisyBlocksSrgb']
    mat_re = np.zeros_like(all_noisy_imgs)
    i_imgs, i_blocks, _, _, _ = all_noisy_imgs.shape

    for i_img in range(i_imgs):
        for i_block in range(i_blocks):
            noise = transforms.ToTensor()(Image.fromarray(
                all_noisy_imgs[i_img][i_block])).unsqueeze(0)
            noise = noise.to(device)
            begin = time.time()
            pred = model(noise)
            pred = pred.detach().cpu()
            mat_re[i_img][i_block] = np.array(trans(pred[0]))

    return mat_re
Example #3
0
def test(args):
    model = MIRNet_DGF()
    # summary(model,[[3,128,128],[0]])
    # exit()
    if args.data_type == 'rgb':
        load_data = load_data_split
    elif args.data_type == 'filter':
        load_data = load_data_filter
    checkpoint_dir = args.checkpoint
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # try:
    checkpoint = load_checkpoint(checkpoint_dir, device == 'cuda', 'latest')
    start_epoch = checkpoint['epoch']
    global_step = checkpoint['global_iter']
    state_dict = checkpoint['state_dict']
    model.load_state_dict(state_dict)
    print('=> loaded checkpoint (epoch {}, global_step {})'.format(start_epoch, global_step))
    # except:
    #     print('=> no checkpoint file to be loaded.')    # model.load_state_dict(state_dict)
    #     exit(1)
    model.eval()
    model = model.to(device)
    trans = transforms.ToPILImage()
    torch.manual_seed(0)
    all_noisy_imgs = scipy.io.loadmat(args.noise_dir)['siddplus_valid_noisy_srgb']
    all_clean_imgs = scipy.io.loadmat(args.gt)['siddplus_valid_gt_srgb']
    # noisy_path = sorted(glob.glob(args.noise_dir+ "/*.png"))
    # clean_path = [ i.replace("noisy","clean") for i in noisy_path]
    i_imgs, _,_,_ = all_noisy_imgs.shape
    psnrs = []
    ssims = []
    # print(noisy_path)
    for i_img in range(i_imgs):
        noise = transforms.ToTensor()(Image.fromarray(all_noisy_imgs[i_img]))
        image_noise, image_noise_hr = load_data(noise, args.burst_length)
        image_noise_hr = image_noise_hr.to(device)
        burst_noise = image_noise.to(device)
        begin = time.time()
        _, pred = model(burst_noise,image_noise_hr)
        pred = pred.detach().cpu()
        gt = transforms.ToTensor()((Image.fromarray(all_clean_imgs[i_img])))
        gt = gt.unsqueeze(0)
        psnr_t = calculate_psnr(pred, gt)
        ssim_t = calculate_ssim(pred, gt)
        psnrs.append(psnr_t)
        ssims.append(ssim_t)
        print(i_img, "   UP   :  PSNR : ", str(psnr_t), " :  SSIM : ", str(ssim_t))
        if args.save_img != '':
            if not os.path.exists(args.save_img):
                os.makedirs(args.save_img)
            plt.figure(figsize=(15, 15))
            plt.imshow(np.array(trans(pred[0])))
            plt.title("denoise KPN DGF " + args.model_type, fontsize=25)
            image_name = str(i_img) + "_"
            plt.axis("off")
            plt.suptitle(image_name + "   UP   :  PSNR : " + str(psnr_t) + " :  SSIM : " + str(ssim_t), fontsize=25)
            plt.savefig(os.path.join(args.save_img, image_name + "_" + args.checkpoint + '.png'), pad_inches=0)
    print("   AVG   :  PSNR : "+ str(np.mean(psnrs))+" :  SSIM : "+ str(np.mean(ssims)))
Example #4
0
def convert_torch_to_onnx():
    img_path = '/home/dell/Downloads/FullTest/noisy/2_1.png'
    output_path = 'models/denoiser_rgb.onnx'

    input_node_names = ['input_image']
    output_nodel_names = ['output_image']

    # torch_model = DenoiseNet()
    # load_checkpoint(torch_model, model_path, 'cpu')
    checkpoint = load_checkpoint("../checkpoints/kpn_att_repeat_new/", False, 'latest')
    state_dict = checkpoint['state_dict']
    torch_model = Att_KPN_DGF(
        color=True,
        burst_length=4,
        blind_est=True,
        kernel_size=[5],
        sep_conv=False,
        channel_att=True,
        spatial_att=True,
        upMode="bilinear",
        core_bias=False
    )
    torch_model.load_state_dict(state_dict)

    img = imageio.imread(img_path)
    img = np.asarray(img, dtype=np.float32) / 255.

    img_tensor = torch.from_numpy(img)
    img_tensor = img_tensor.permute(2, 0, 1)
    image_noise, image_noise_hr = load_data(img_tensor, 4)
    # begin = time.time()
    # print(image_noise_batch.size())
    b, N, c, h, w = image_noise.size()
    feedData = image_noise.view(b, -1, h, w)
    print('Test forward pass')
    s = time.time()
    print("feedData  :",feedData.size())
    print("image_noise  ",image_noise[:, 0:4, ...].size())
    print("image_noise_hr  ",image_noise_hr.size())
    with torch.no_grad():
        _,enhanced_img_tensor = torch_model(feedData, image_noise[:, 0:4, ...],image_noise_hr)
        enhanced_img_tensor = torch.clamp(enhanced_img_tensor, 0, 1)
        enhanced_img = (enhanced_img_tensor.permute(0, 2, 3, 1).squeeze(0)
                        .cpu().detach().numpy())
        enhanced_img = np.clip(enhanced_img * 255, 0, 255).astype('uint8')
        imageio.imwrite('../img/denoised.jpg', enhanced_img)
    print('- Time: ', time.time() - s)

    print('Export to onnx format')
    s = time.time()
    # torch2onnx(torch_model, img_tensor, output_path, input_node_names,
    torch2onnx(torch_model, (feedData, image_noise[:, 0:4, ...],image_noise_hr), output_path, input_node_names,
               output_nodel_names, keep_initializers=False,
               verify_after_export=True)
    print('- Time: ', time.time() - s)
Example #5
0
def test(args):
    model = MIRNet()
    save_img = args.save_img
    checkpoint_dir = "checkpoints/mir"
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # try:
    checkpoint = load_checkpoint(checkpoint_dir, device == 'cuda', 'latest')
    start_epoch = checkpoint['epoch']
    global_step = checkpoint['global_iter']
    state_dict = checkpoint['state_dict']
    model.load_state_dict(state_dict)
    print('=> loaded checkpoint (epoch {}, global_step {})'.format(
        start_epoch, global_step))
    # except:
    #     print('=> no checkpoint file to be loaded.')    # model.load_state_dict(state_dict)
    #     exit(1)
    model.eval()
    model = model.to(device)
    trans = transforms.ToPILImage()
    torch.manual_seed(0)
    noisy_path = sorted(glob.glob(args.noise_dir + "/2_*.png"))
    clean_path = [i.replace("noisy", "clean") for i in noisy_path]
    print(noisy_path)
    for i in range(len(noisy_path)):
        noise = transforms.ToTensor()(Image.open(
            noisy_path[i]).convert('RGB'))[:, 0:args.image_size,
                                           0:args.image_size].unsqueeze(0)
        noise = noise.to(device)
        begin = time.time()
        print(noise.size())
        pred = model(noise)
        pred = pred.detach().cpu()
        gt = transforms.ToTensor()(Image.open(
            clean_path[i]).convert('RGB'))[:, 0:args.image_size,
                                           0:args.image_size]
        gt = gt.unsqueeze(0)
        psnr_t = calculate_psnr(pred, gt)
        ssim_t = calculate_ssim(pred, gt)
        print(i, "   UP   :  PSNR : ", str(psnr_t), " :  SSIM : ", str(ssim_t))
        if save_img != '':
            if not os.path.exists(args.save_img):
                os.makedirs(args.save_img)
            plt.figure(figsize=(15, 15))
            plt.imshow(np.array(trans(pred[0])))
            plt.title("denoise KPN DGF " + args.model_type, fontsize=25)
            image_name = noisy_path[i].split("/")[-1].split(".")[0]
            plt.axis("off")
            plt.suptitle(image_name + "   UP   :  PSNR : " + str(psnr_t) +
                         " :  SSIM : " + str(ssim_t),
                         fontsize=25)
            plt.savefig(os.path.join(
                args.save_img, image_name + "_" + args.checkpoint + '.png'),
                        pad_inches=0)
Example #6
0
def eval():
    model = Network(True).cuda()
    model.load_state_dict(load_checkpoint('./noise_models', best_or_latest='best'))
    model.eval()
    from torchvision.transforms import transforms
    from PIL import Image
    img = Image.open('./003/1.jpg')
    trans_tensor = transforms.ToTensor()
    trans_srgb = transforms.ToPILImage()
    img = trans_tensor(img).unsqueeze(0).cuda()
    pred = model(img).squeeze()
    print('min:', torch.min(pred), 'max:', torch.max(pred))
    pred = pred / torch.max(pred)
    pred = pred.cpu()
    trans_srgb(pred).save('./003/1_pred.png', quality=100)
    print('OK!')
Example #7
0
def test(args):
    if args.model_type == "DGF":
        model = MIRNet_DGF(n_colors=args.n_colors,
                           out_channels=args.out_channels)
    elif args.model_type == "noise":
        model = MIRNet_noise(n_colors=args.n_colors,
                             out_channels=args.out_channels)
    else:
        print(" Model type not valid")
        return
    checkpoint_dir = args.checkpoint
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # try:
    checkpoint = load_checkpoint(checkpoint_dir, device == 'cuda', 'latest')
    start_epoch = checkpoint['epoch']
    global_step = checkpoint['global_iter']
    state_dict = checkpoint['state_dict']
    model.load_state_dict(state_dict)
    print('=> loaded checkpoint (epoch {}, global_step {})'.format(
        start_epoch, global_step))
    model.eval()
    model = model.to(device)
    trans = transforms.ToPILImage()
    torch.manual_seed(0)
    all_noisy_imgs = scipy.io.loadmat(
        args.noise_dir)['BenchmarkNoisyBlocksRaw']
    mat_re = np.zeros_like(all_noisy_imgs)
    i_imgs, i_blocks, _, _ = all_noisy_imgs.shape

    for i_img in range(i_imgs):
        for i_block in range(i_blocks):
            noise = transforms.ToTensor()(pack_raw(
                all_noisy_imgs[i_img][i_block]))
            image_noise, image_noise_hr = load_data(noise, args.burst_length)
            image_noise_hr = image_noise_hr.to(device)
            burst_noise = image_noise.to(device)
            begin = time.time()
            _, pred = model(burst_noise, image_noise_hr)
            pred = np.array(pred.detach().cpu()[0]).transpose(1, 2, 0)
            pred = unpack_raw(pred)
            mat_re[i_img][i_block] = np.array(pred)

    return mat_re
Example #8
0
def convert_torch_to_onnx():
    img_path = '/home/dell/Downloads/FullTest/noisy/2_1.png'
    model_path = '../../denoiser/pretrained_models/denoising/sidd_rgb.pth'
    output_path = 'models/denoiser_rgb.onnx'

    input_node_names = ['input_image']
    output_nodel_names = ['output_image']

    # torch_model = DenoiseNet()
    # load_checkpoint(torch_model, model_path, 'cpu')
    checkpoint = load_checkpoint("../checkpoints/mir/", False, 'latest')
    state_dict = checkpoint['state_dict']
    torch_model = MIRNet()
    torch_model.load_state_dict(state_dict)

    img = imageio.imread(img_path)
    # img = img[0:256,0:256,:]
    print(img.shape)
    img = np.asarray(img, dtype=np.float32) / 255.

    img_tensor = torch.from_numpy(img)
    img_tensor = img_tensor.permute(2, 0, 1).unsqueeze(0)

    print('Test forward pass')
    s = time.time()
    with torch.no_grad():
        enhanced_img_tensor = torch_model(img_tensor)
        enhanced_img_tensor = torch.clamp(enhanced_img_tensor, 0, 1)
        enhanced_img = (enhanced_img_tensor.permute(0, 2, 3, 1).squeeze(0)
                        .cpu().detach().numpy())
        enhanced_img = np.clip(enhanced_img * 255, 0, 255).astype('uint8')
        imageio.imwrite('../img/denoised.jpg', enhanced_img)
    print('- Time: ', time.time() - s)

    print('Export to onnx format')
    s = time.time()
    torch2onnx(torch_model, img_tensor, output_path, input_node_names,
               output_nodel_names, keep_initializers=False,
               verify_after_export=True)
    print('- Time: ', time.time() - s)
Example #9
0
def eval(config, args):
    train_config = config['training']
    arch_config = config['architecture']

    use_cache = train_config['use_cache']

    print('Eval Process......')

    checkpoint_dir = train_config['checkpoint_dir']
    if not os.path.exists(checkpoint_dir) or len(
            os.listdir(checkpoint_dir)) == 0:
        print('There is no any checkpoint file in path:{}'.format(
            checkpoint_dir))
    # the path for saving eval images
    eval_dir = train_config['eval_dir']
    if not os.path.exists(eval_dir):
        os.mkdir(eval_dir)
    files = os.listdir(eval_dir)
    for f in files:
        os.remove(os.path.join(eval_dir, f))

    # dataset and dataloader
    data_set = TrainDataSet(train_config['dataset_configs'],
                            img_format='.bmp',
                            degamma=True,
                            color=False,
                            blind=arch_config['blind_est'],
                            train=False)
    data_loader = DataLoader(data_set,
                             batch_size=1,
                             shuffle=False,
                             num_workers=args.num_workers)

    dataset_config = read_config(train_config['dataset_configs'],
                                 _configspec_path())['dataset_configs']

    # model here
    model = KPN(color=False,
                burst_length=dataset_config['burst_length'],
                blind_est=arch_config['blind_est'],
                kernel_size=list(map(int, arch_config['kernel_size'].split())),
                sep_conv=arch_config['sep_conv'],
                channel_att=arch_config['channel_att'],
                spatial_att=arch_config['spatial_att'],
                upMode=arch_config['upMode'],
                core_bias=arch_config['core_bias'])
    if args.cuda:
        model = model.cuda()

    if args.mGPU:
        model = nn.DataParallel(model)
    # load trained model
    ckpt = load_checkpoint(checkpoint_dir, args.checkpoint)
    model.load_state_dict(ckpt['state_dict'])
    print('The model has been loaded from epoch {}, n_iter {}.'.format(
        ckpt['epoch'], ckpt['global_iter']))
    # switch the eval mode
    model.eval()

    # data_loader = iter(data_loader)
    burst_length = dataset_config['burst_length']
    data_length = burst_length if arch_config['blind_est'] else burst_length + 1
    patch_size = dataset_config['patch_size']

    trans = transforms.ToPILImage()

    with torch.no_grad():
        psnr = 0.0
        ssim = 0.0
        for i, (burst_noise, gt, white_level) in enumerate(data_loader):
            if i < 100:
                # data = next(data_loader)
                if args.cuda:
                    burst_noise = burst_noise.cuda()
                    gt = gt.cuda()
                    white_level = white_level.cuda()

                pred_i, pred = model(burst_noise,
                                     burst_noise[:, 0:burst_length,
                                                 ...], white_level)

                pred_i = sRGBGamma(pred_i)
                pred = sRGBGamma(pred)
                gt = sRGBGamma(gt)
                burst_noise = sRGBGamma(burst_noise / white_level)

                psnr_t = calculate_psnr(pred.unsqueeze(1), gt.unsqueeze(1))
                ssim_t = calculate_ssim(pred.unsqueeze(1), gt.unsqueeze(1))
                psnr_noisy = calculate_psnr(
                    burst_noise[:, 0, ...].unsqueeze(1), gt.unsqueeze(1))
                psnr += psnr_t
                ssim += ssim_t

                pred = torch.clamp(pred, 0.0, 1.0)

                if args.cuda:
                    pred = pred.cpu()
                    gt = gt.cpu()
                    burst_noise = burst_noise.cpu()

                trans(burst_noise[0, 0, ...].squeeze()).save(os.path.join(
                    eval_dir, '{}_noisy_{:.2f}dB.png'.format(i, psnr_noisy)),
                                                             quality=100)
                trans(pred.squeeze()).save(os.path.join(
                    eval_dir, '{}_pred_{:.2f}dB.png'.format(i, psnr_t)),
                                           quality=100)
                trans(gt.squeeze()).save(os.path.join(eval_dir,
                                                      '{}_gt.png'.format(i)),
                                         quality=100)

                print('{}-th image is OK, with PSNR: {:.2f}dB, SSIM: {:.4f}'.
                      format(i, psnr_t, ssim_t))
            else:
                break
        print('All images are OK, average PSNR: {:.2f}dB, SSIM: {:.4f}'.format(
            psnr / 100, ssim / 100))
Example #10
0
def train(args):
    torch.set_num_threads(args.num_workers)
    torch.manual_seed(0)
    if args.data_type == 'rgb':
        data_set = SingleLoader(noise_dir=args.noise_dir,
                                gt_dir=args.gt_dir,
                                image_size=args.image_size)
    elif args.data_type == 'raw':
        data_set = SingleLoader_raw(noise_dir=args.noise_dir,
                                    gt_dir=args.gt_dir,
                                    image_size=args.image_size)
    else:
        print("Data type not valid")
        exit()
    data_loader = DataLoader(data_set,
                             batch_size=args.batch_size,
                             shuffle=True,
                             num_workers=args.num_workers,
                             pin_memory=True)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    loss_func = losses.CharbonnierLoss().to(device)
    # loss_func = losses.AlginLoss().to(device)
    adaptive = robust_loss.adaptive.AdaptiveLossFunction(
        num_dims=3 * args.image_size**2, float_dtype=np.float32, device=device)
    checkpoint_dir = args.checkpoint
    if not os.path.exists(checkpoint_dir):
        os.makedirs(checkpoint_dir)
    if args.model_type == "MIR":
        model = MIRNet(in_channels=args.n_colors,
                       out_channels=args.out_channels).to(device)
    elif args.model_type == "KPN":
        model = MIRNet_kpn(in_channels=args.n_colors,
                           out_channels=args.out_channels).to(device)
    else:
        print(" Model type not valid")
        return
    optimizer = optim.Adam(model.parameters(), lr=args.lr)
    optimizer.zero_grad()
    average_loss = MovingAverage(args.save_every)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
                                               [2, 4, 6, 8, 10, 12, 14, 16],
                                               0.8)
    if args.restart:
        start_epoch = 0
        global_step = 0
        best_loss = np.inf
        print('=> no checkpoint file to be loaded.')
    else:
        try:
            checkpoint = load_checkpoint(checkpoint_dir, device == 'cuda',
                                         'latest')
            start_epoch = checkpoint['epoch']
            global_step = checkpoint['global_iter']
            best_loss = checkpoint['best_loss']
            state_dict = checkpoint['state_dict']
            # new_state_dict = OrderedDict()
            # for k, v in state_dict.items():
            #     name = "model."+ k  # remove `module.`
            #     new_state_dict[name] = v
            model.load_state_dict(state_dict)
            optimizer.load_state_dict(checkpoint['optimizer'])
            print('=> loaded checkpoint (epoch {}, global_step {})'.format(
                start_epoch, global_step))
        except:
            start_epoch = 0
            global_step = 0
            best_loss = np.inf
            print('=> no checkpoint file to be loaded.')
    eps = 1e-4
    for epoch in range(start_epoch, args.epoch):
        for step, (noise, gt) in enumerate(data_loader):
            noise = noise.to(device)
            gt = gt.to(device)
            pred = model(noise)
            # print(pred.size())
            loss = loss_func(pred, gt)
            # bs = gt.size()[0]
            # diff = noise - gt
            # loss = torch.sqrt((diff * diff) + (eps * eps))
            # loss = loss.view(bs,-1)
            # loss = adaptive.lossfun(loss)
            # loss = torch.mean(loss)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            average_loss.update(loss)
            if global_step % args.save_every == 0:
                print(len(average_loss._cache))
                if average_loss.get_value() < best_loss:
                    is_best = True
                    best_loss = average_loss.get_value()
                else:
                    is_best = False

                save_dict = {
                    'epoch': epoch,
                    'global_iter': global_step,
                    'state_dict': model.state_dict(),
                    'best_loss': best_loss,
                    'optimizer': optimizer.state_dict(),
                }
                save_checkpoint(save_dict, is_best, checkpoint_dir,
                                global_step)
            if global_step % args.loss_every == 0:
                print(global_step, "PSNR  : ", calculate_psnr(pred, gt))
                print(average_loss.get_value())
            global_step += 1
        print('Epoch {} is finished.'.format(epoch))
        scheduler.step()
Example #11
0
def train(num_workers, cuda, restart_train, mGPU):
    # torch.set_num_threads(num_threads)

    color = True
    batch_size = args.batch_size
    lr = 2e-4
    lr_decay = 0.89125093813
    n_epoch = args.epoch
    # num_workers = 8
    save_freq = args.save_every
    loss_freq = args.loss_every
    lr_step_size = 100
    burst_length = args.burst_length
    # checkpoint path
    checkpoint_dir = "checkpoints/" + args.checkpoint
    if not os.path.exists(checkpoint_dir):
        os.makedirs(checkpoint_dir)
    # logs path
    logs_dir = "checkpoints/logs/" + args.checkpoint
    if not os.path.exists(logs_dir):
        os.makedirs(logs_dir)
    shutil.rmtree(logs_dir)
    log_writer = SummaryWriter(logs_dir)

    # dataset and dataloader
    data_set = SingleLoader_DGF(noise_dir=args.noise_dir,gt_dir=args.gt_dir,image_size=args.image_size,burst_length=burst_length)
    data_loader = DataLoader(
        data_set,
        batch_size=batch_size,
        shuffle=True,
        num_workers=num_workers
    )
    # model here
    if args.model_type == "attKPN":
        model = Att_KPN_noise_DGF(
            color=color,
            burst_length=burst_length,
            blind_est=False,
            kernel_size=[5],
            sep_conv=False,
            channel_att=True,
            spatial_att=True,
            upMode="bilinear",
            core_bias=False
        )
    elif args.model_type == "attWKPN":
        model = Att_Weight_KPN_noise_DGF(
            color=color,
            burst_length=burst_length,
            blind_est=False,
            kernel_size=[5],
            sep_conv=False,
            channel_att=True,
            spatial_att=True,
            upMode="bilinear",
            core_bias=False
        )
    elif args.model_type == 'KPN':
        model = KPN_noise_DGF(
            color=color,
            burst_length=burst_length,
            blind_est=False,
            kernel_size=[5],
            sep_conv=False,
            channel_att=False,
            spatial_att=False,
            upMode="bilinear",
            core_bias=False
        )
    else:
        print(" Model type not valid")
        return
    if cuda:
        model = model.cuda()

    if mGPU:
        model = nn.DataParallel(model)
    model.train()

    # loss function here
    loss_func = LossBasic()
    if args.wavelet_loss:
        print("Use wavelet loss")
        loss_func2 = WaveletLoss()
    # Optimizer here
    optimizer = optim.Adam(
        model.parameters(),
        lr=lr
    )

    optimizer.zero_grad()

    # learning rate scheduler here
    scheduler = lr_scheduler.StepLR(optimizer, step_size=lr_step_size, gamma=lr_decay)

    average_loss = MovingAverage(save_freq)
    if not restart_train:
        try:
            checkpoint = load_checkpoint(checkpoint_dir,cuda , best_or_latest=args.load_type)
            start_epoch = checkpoint['epoch']
            global_step = checkpoint['global_iter']
            best_loss = checkpoint['best_loss']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            scheduler.load_state_dict(checkpoint['lr_scheduler'])
            print('=> loaded checkpoint (epoch {}, global_step {})'.format(start_epoch, global_step))
        except:
            start_epoch = 0
            global_step = 0
            best_loss = np.inf
            print('=> no checkpoint file to be loaded.')
    else:
        start_epoch = 0
        global_step = 0
        best_loss = np.inf
        if os.path.exists(checkpoint_dir):
            pass
            # files = os.listdir(checkpoint_dir)
            # for f in files:
            #     os.remove(os.path.join(checkpoint_dir, f))
        else:
            os.mkdir(checkpoint_dir)
        print('=> training')


    for epoch in range(start_epoch, n_epoch):
        epoch_start_time = time.time()
        # decay the learning rate

        # print('='*20, 'lr={}'.format([param['lr'] for param in optimizer.param_groups]), '='*20)
        t1 = time.time()
        for step, (image_noise_hr,image_noise_lr, image_gt_hr, _) in enumerate(data_loader):
            # print(burst_noise.size())
            # print(gt.size())
            if cuda:
                burst_noise = image_noise_lr.cuda()
                gt = image_gt_hr.cuda()
                image_noise_hr = image_noise_hr.cuda()
                noise_gt = (image_noise_hr-image_gt_hr).cuda()
            else:
                burst_noise = image_noise_lr
                gt = image_gt_hr
                noise_gt = image_noise_hr - image_gt_hr
            #
            _, pred,noise = model(burst_noise,image_noise_hr)
            # print(pred.size())
            #
            loss_basic = loss_func(pred, gt)
            loss_noise = loss_func(noise,noise_gt)
            loss = loss_basic + loss_noise
            if args.wavelet_loss:
                loss_wave = loss_func2(pred,gt)
                loss_wave_noise = loss_func2(noise,noise_gt)
                # print(loss_wave)
                loss = loss_basic + loss_wave + loss_noise + loss_wave_noise
            # backward
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            # update the average loss
            average_loss.update(loss)
            # global_step

            if not color:
                pred = pred.unsqueeze(1)
                gt = gt.unsqueeze(1)
            if global_step %loss_freq ==0:
                # calculate PSNR
                print("burst_noise  : ",burst_noise.size())
                print("gt   :  ",gt.size())
                psnr = calculate_psnr(pred, gt)
                ssim = calculate_ssim(pred, gt)

                # add scalars to tensorboardX
                log_writer.add_scalar('loss_basic', loss_basic, global_step)
                log_writer.add_scalar('loss_total', loss, global_step)
                log_writer.add_scalar('psnr', psnr, global_step)
                log_writer.add_scalar('ssim', ssim, global_step)

                # print
                print('{:-4d}\t| epoch {:2d}\t| step {:4d}\t| loss_basic: {:.4f}\t|'
                      ' loss: {:.4f}\t| PSNR: {:.2f}dB\t| SSIM: {:.4f}\t| time:{:.2f} seconds.'
                      .format(global_step, epoch, step, loss_basic, loss, psnr, ssim, time.time()-t1))
                t1 = time.time()


            if global_step % save_freq == 0:
                if average_loss.get_value() < best_loss:
                    is_best = True
                    best_loss = average_loss.get_value()
                else:
                    is_best = False

                save_dict = {
                    'epoch': epoch,
                    'global_iter': global_step,
                    'state_dict': model.state_dict(),
                    'best_loss': best_loss,
                    'optimizer': optimizer.state_dict(),
                    'lr_scheduler': scheduler.state_dict()
                }
                save_checkpoint(
                    save_dict, is_best, checkpoint_dir, global_step, max_keep=10
                )
            global_step += 1
        print('Epoch {} is finished, time elapsed {:.2f} seconds.'.format(epoch, time.time()-epoch_start_time))
        lr_cur = [param['lr'] for param in optimizer.param_groups]
        if lr_cur[0] > 5e-6:
            scheduler.step()
        else:
            for param in optimizer.param_groups:
                param['lr'] = 5e-6
Example #12
0
def test_multi(args):
    model = MIRNet()

    checkpoint_dir = args.checkpoint
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # try:

    checkpoint = load_checkpoint(checkpoint_dir, device == 'cuda', 'latest')
    start_epoch = checkpoint['epoch']
    global_step = checkpoint['global_iter']
    state_dict = checkpoint['state_dict']
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        name = "model." + k  # remove `module.`
        new_state_dict[name] = v
    model.load_state_dict(new_state_dict)
    print('=> loaded checkpoint (epoch {}, global_step {})'.format(
        start_epoch, global_step))
    # except:
    #     print('=> no checkpoint file to be loaded.')    # model.load_state_dict(state_dict)
    #     exit(1)
    model.eval()
    model = model.to(device)
    trans = transforms.ToPILImage()
    torch.manual_seed(0)

    mat_folders = glob.glob(os.path.join(args.noise_dir, '*'))

    trans = transforms.ToPILImage()
    if not os.path.exists(args.save_img):
        os.makedirs(args.save_img)
    for mat_folder in mat_folders:
        save_mat_folder = os.path.join(args.save_img,
                                       mat_folder.split("/")[-1])
        for mat_file in glob.glob(os.path.join(mat_folder, '*')):
            mat_contents = sio.loadmat(mat_file)
            sub_image, y_gb, x_gb = mat_contents['image'], mat_contents[
                'y_gb'][0][0], mat_contents['x_gb'][0][0]
            image_noise = transforms.ToTensor()(
                Image.fromarray(sub_image)).unsqueeze(0)
            image_noise_batch = image_noise.to(device)

            pred = model(image_noise_batch)
            pred = np.array(trans(pred[0].cpu()))
            if args.save_img != '':
                if not os.path.exists(save_mat_folder):
                    os.makedirs(save_mat_folder)
                # mat_contents['image'] = pred
                # print(mat_contents)
                print("save : ",
                      os.path.join(save_mat_folder,
                                   mat_file.split("/")[-1]))
                data = {
                    "image": pred,
                    "y_gb": mat_contents['y_gb'][0][0],
                    "x_gb": mat_contents['x_gb'][0][0],
                    "y_lc": mat_contents['y_lc'][0][0],
                    "x_lc": mat_contents['x_lc'][0][0],
                    'size': mat_contents['size'][0][0],
                    "H": mat_contents['H'][0][0],
                    "W": mat_contents['W'][0][0]
                }
                # print(data)
                sio.savemat(
                    os.path.join(save_mat_folder,
                                 mat_file.split("/")[-1]), data)
Example #13
0
from model.KPN_DGF import KPN_DGF, Att_KPN_DGF, Att_Weight_KPN_DGF, Att_KPN_Wavelet_DGF
import torch
import tensorflow as tf
import onnx
from onnx_tf.backend import prepare
import os
from utils.training_util import save_checkpoint, MovingAverage, load_checkpoint

checkpoint = load_checkpoint("../checkpoints/kpn_att_repeat_new/", False,
                             'latest')
state_dict = checkpoint['state_dict']
model = Att_KPN_DGF(color=True,
                    burst_length=4,
                    blind_est=True,
                    kernel_size=[5],
                    sep_conv=False,
                    channel_att=True,
                    spatial_att=True,
                    upMode="bilinear",
                    core_bias=False)
# model.load_state_dict(state_dict)
model.eval()
from torchsummary import summary
summary(model, [(12, 256, 256), (4, 3, 256, 256), (3, 512, 512)], batch_size=1)
exit()
# Converting model to ONNX
print('===> Converting model to ONNX.')
try:
    for _ in model.modules():
        _.training = False
Example #14
0
def test(args):
    if args.model_type == "DGF":
        model = MIRNet_DGF(n_colors=args.n_colors,
                           out_channels=args.out_channels)
    elif args.model_type == "noise":
        model = MIRNet_noise(n_colors=args.n_colors,
                             out_channels=args.out_channels)
    else:
        print(" Model type not valid")
        return
    checkpoint_dir = args.checkpoint
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # try:

    checkpoint = load_checkpoint(checkpoint_dir, device == 'cuda', 'latest')
    start_epoch = checkpoint['epoch']
    global_step = checkpoint['global_iter']
    state_dict = checkpoint['state_dict']
    # new_state_dict = OrderedDict()
    # for k, v in state_dict.items():
    #     name = "model." + k  # remove `module.`
    #     new_state_dict[name] = v
    model.load_state_dict(state_dict)
    print('=> loaded checkpoint (epoch {}, global_step {})'.format(
        start_epoch, global_step))
    # except:
    #     print('=> no checkpoint file to be loaded.')    # model.load_state_dict(state_dict)
    #     exit(1)
    model.eval()
    model = model.to(device)
    trans = transforms.ToPILImage()
    torch.manual_seed(0)

    all_noisy_imgs = scipy.io.loadmat(
        args.noise_dir)['ValidationNoisyBlocksRaw']
    all_clean_imgs = scipy.io.loadmat(args.gt_dir)['ValidationGtBlocksRaw']
    # noisy_path = sorted(glob.glob(args.noise_dir+ "/*.png"))
    # clean_path = [ i.replace("noisy","clean") for i in noisy_path]
    i_imgs, i_blocks, _, _ = all_noisy_imgs.shape
    psnrs = []
    ssims = []
    # print(noisy_path)
    for i_img in range(i_imgs):
        for i_block in range(i_blocks):
            noise = transforms.ToTensor()(pack_raw(
                all_noisy_imgs[i_img][i_block]))
            image_noise, image_noise_hr = load_data(noise, args.burst_length)
            image_noise_hr = image_noise_hr.to(device)
            burst_noise = image_noise.to(device)
            begin = time.time()
            _, pred = model(burst_noise, image_noise_hr)
            pred = pred.detach().cpu()
            gt = transforms.ToTensor()(
                (pack_raw(all_clean_imgs[i_img][i_block])))
            gt = gt.unsqueeze(0)
            psnr_t = calculate_psnr(pred, gt)
            ssim_t = calculate_ssim(pred, gt)
            psnrs.append(psnr_t)
            ssims.append(ssim_t)
            print(i_img, "   UP   :  PSNR : ", str(psnr_t), " :  SSIM : ",
                  str(ssim_t))
            if args.save_img != '':
                if not os.path.exists(args.save_img):
                    os.makedirs(args.save_img)
                plt.figure(figsize=(15, 15))
                plt.imshow(np.array(trans(pred[0])))
                plt.title("denoise KPN DGF " + args.model_type, fontsize=25)
                image_name = str(i_img)
                plt.axis("off")
                plt.suptitle(image_name + "   UP   :  PSNR : " + str(psnr_t) +
                             " :  SSIM : " + str(ssim_t),
                             fontsize=25)
                plt.savefig(os.path.join(
                    args.save_img,
                    image_name + "_" + args.checkpoint + '.png'),
                            pad_inches=0)
    print("   AVG   :  PSNR : " + str(np.mean(psnrs)) + " :  SSIM : " +
          str(np.mean(ssims)))
Example #15
0
def train():
    log_writer = SummaryWriter('./logs')
    parser = argparse.ArgumentParser()
    parser.add_argument('--restart', '-r', action='store_true')
    args = parser.parse_args()

    config = read_config('kpn_specs/att_kpn_config.conf', 'kpn_specs/configspec.conf')
    train_config = config['training']
    data_set = TrainDataSet(
        train_config['dataset_configs'],
        img_format='.bmp',
        degamma=True,
        color=True,
        blind=False
    )
    data_loader = DataLoader(
        dataset=data_set,
        batch_size=32,
        shuffle=True,
        num_workers=4
    )

    loss_fn = nn.L1Loss()

    model = Network(True).cuda()

    model.train()

    optimizer = optim.Adam(model.parameters(), lr=5e-5)

    if not args.restart:
        model.load_state_dict(load_checkpoint('./noise_models', best_or_latest='best'))
    global_iter = 0
    min_loss = np.inf
    loss_ave = MovingAverage(200)

    import os
    if not os.path.exists('./noise_models'):
        os.mkdir('./noise_models')

    for epoch in range(100):
        for step, (data, A, B) in enumerate(data_loader):
            feed = data[:, 0, ...].cuda()
            gt = data[:, -1, ...].cuda()
            # print(data.size())
            pred = model(feed)

            loss = loss_fn(pred, gt)

            global_iter += 1

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            log_writer.add_scalar('loss', loss, global_iter)

            loss_ave.update(loss)
            if global_iter % 200 == 0:
                loss_t = loss_ave.get_value()
                min_loss = min(min_loss, loss_t)
                is_best = min_loss == loss_t
                save_checkpoint(
                    model.state_dict(),
                    is_best=is_best,
                    checkpoint_dir='./noise_models',
                    n_iter=global_iter
                )
            print('{: 6d}, epoch {: 3d}, iter {: 4d}, loss {:.4f}'.format(global_iter, epoch, step, loss))
Example #16
0
def train(args):
    # torch.set_num_threads(4)
    # torch.manual_seed(args.seed)
    # checkpoint = utility.checkpoint(args)
    data_set = SingleLoader(noise_dir=args.noise_dir,
                            gt_dir=args.gt_dir,
                            image_size=args.image_size)
    data_loader = DataLoader(data_set,
                             batch_size=args.batch_size,
                             shuffle=False,
                             num_workers=args.num_workers)

    loss_basic = BasicLoss()
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    checkpoint_dir = args.checkpoint
    if not os.path.exists(checkpoint_dir):
        os.makedirs(checkpoint_dir)
    model = MWRN_lv3().to(device)
    optimizer = optim.Adam(model.parameters(), lr=1e-3)
    scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
                                               [5, 10, 15, 20, 25, 30], 0.5)
    optimizer.zero_grad()
    average_loss = MovingAverage(args.save_every)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    try:
        checkpoint = load_checkpoint(checkpoint_dir, device == 'cuda',
                                     'latest')
        start_epoch = checkpoint['epoch']
        global_step = checkpoint['global_iter']
        best_loss = checkpoint['best_loss']
        state_dict = checkpoint['state_dict']

        model.load_state_dict(state_dict)
        optimizer.load_state_dict(checkpoint['optimizer'])
        print('=> loaded checkpoint (epoch {}, global_step {})'.format(
            start_epoch, global_step))
    except:
        start_epoch = 0
        global_step = 0
        best_loss = np.inf
        print('=> no checkpoint file to be loaded.')
    DWT = common.DWT()
    param = [x for name, x in model.named_parameters()]
    clip_grad_D = 1e4
    grad_norm_D = 0
    for epoch in range(start_epoch, args.epoch):
        for step, (noise, gt) in enumerate(data_loader):
            noise = noise.to(device)
            gt = gt.to(device)
            x1 = DWT(gt).to(device)
            x2 = DWT(x1).to(device)
            x3 = DWT(x2).to(device)

            y1 = DWT(noise).to(device)
            y2 = DWT(y1).to(device)
            y3 = DWT(y2).to(device)
            lv3_out, img_lv3 = model(y3, None)
            scale_loss_lv3 = loss_basic(x3, img_lv3)
            loss = scale_loss_lv3
            optimizer.zero_grad()
            loss.backward()
            total_norm_D = nn.utils.clip_grad_norm_(param, clip_grad_D)
            grad_norm_D = (grad_norm_D * (step / (step + 1)) + total_norm_D /
                           (step + 1))
            optimizer.step()
            average_loss.update(loss)
            if global_step % args.save_every == 0:
                print("Save : epoch ", epoch,
                      " step : ", global_step, " with avg loss : ",
                      average_loss.get_value(), ",   best loss : ", best_loss)
                if average_loss.get_value() < best_loss:
                    is_best = True
                    best_loss = average_loss.get_value()
                else:
                    is_best = False
                save_dict = {
                    'epoch': epoch,
                    'global_iter': global_step,
                    'state_dict': model.state_dict(),
                    'best_loss': best_loss,
                    'optimizer': optimizer.state_dict(),
                }
                save_checkpoint(save_dict, is_best, checkpoint_dir,
                                global_step)
            if global_step % args.loss_every == 0:
                print(global_step, ": ", average_loss.get_value())
            global_step += 1
        clip_grad_D = min(clip_grad_D, grad_norm_D)
        scheduler.step()
        print("Epoch : ", epoch, "end at step: ", global_step)
Example #17
0
def test_multi(args):
    color = True
    burst_length = args.burst_length
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if args.model_type == "attKPN":
        model = Att_KPN_DGF(
            color=color,
            burst_length=burst_length,
            blind_est=True,
            kernel_size=[5],
            sep_conv=False,
            channel_att=True,
            spatial_att=True,
            upMode="bilinear",
            core_bias=False
        )
    elif args.model_type == "attKPN_Wave":
        model = Att_KPN_Wavelet_DGF(
            color=color,
            burst_length=burst_length,
            blind_est=True,
            kernel_size=[5],
            sep_conv=False,
            channel_att=True,
            spatial_att=True,
            upMode="bilinear",
            core_bias=False
        )
    elif args.model_type == "attWKPN":
        model = Att_Weight_KPN_DGF(
            color=color,
            burst_length=burst_length,
            blind_est=True,
            kernel_size=[5],
            sep_conv=False,
            channel_att=True,
            spatial_att=True,
            upMode="bilinear",
            core_bias=False
        )
    elif args.model_type == "KPN":
        model = KPN_DGF(
            color=color,
            burst_length=burst_length,
            blind_est=True,
            kernel_size=[5],
            sep_conv=False,
            channel_att=False,
            spatial_att=False,
            upMode="bilinear",
            core_bias=False
        )
    else:
        print(" Model type not valid")
        return
    checkpoint_dir = "checkpoints/" + args.checkpoint
    if not os.path.exists(checkpoint_dir) or len(os.listdir(checkpoint_dir)) == 0:
        print('There is no any checkpoint file in path:{}'.format(checkpoint_dir))
    # load trained model
    ckpt = load_checkpoint(checkpoint_dir,cuda=device=='cuda',best_or_latest=args.load_type)
    state_dict = ckpt['state_dict']

    # if not args.cuda:
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        name = k[7:]  # remove `module.`
        new_state_dict[name] = v
    model.load_state_dict(state_dict)
    # else:
    #     model.load_state_dict(ckpt['state_dict'])

    model.to(device)
    print('The model has been loaded from epoch {}, n_iter {}.'.format(ckpt['epoch'], ckpt['global_iter']))
    # switch the eval mode
    noisy_path = sorted(glob.glob(args.noise_dir+ "/*.png"))
    model.eval()
    torch.manual_seed(0)
    trans = transforms.ToPILImage()
    if not os.path.exists(args.save_img):
        os.makedirs(args.save_img)
    for i in range(len(noisy_path)):
        image_noise = transforms.ToTensor()(Image.open(noisy_path[i]).convert('RGB'))
        image_noise,image_noise_hr = load_data(image_noise,burst_length)
        image_noise_hr = image_noise_hr.to(device)
        # begin = time.time()
        image_noise_batch = image_noise.to(device)
        # print(image_noise_batch.size())
        # burst_size = image_noise_batch.size()[1]
        burst_noise = image_noise_batch.to(device)
        # print(burst_noise.size())
        # print(image_noise_hr.size())
        if color:
            b, N, c, h, w = burst_noise.size()
            feedData = burst_noise.view(b, -1, h, w)
        else:
            feedData = burst_noise
        pred_i, pred = model(feedData, burst_noise[:, 0:burst_length, ...],image_noise_hr)
        del pred_i
        print(pred.size())
        pred = np.array(trans(pred[0].cpu()))
        print(pred.shape)
        if args.save_img != '':
            if not os.path.exists(args.save_img):
                os.makedirs(args.save_img)
            # mat_contents['image'] = pred
            # print(mat_contents)
            print("save : ", os.path.join(args.save_img,noisy_path[i].split("/")[-1].split(".")[0]+'.mat'))
            data = {"Idenoised_crop": pred}
            # print(data)
            sio.savemat(os.path.join(args.save_img,noisy_path[i].split("/")[-1].split(".")[0]+'.mat'), data)
Example #18
0
def validation(args):
    gkpn_model = Att_Weight_KPN(color=False,
                                burst_length=8,
                                blind_est=False,
                                kernel_size=[5],
                                sep_conv=False,
                                channel_att=True,
                                spatial_att=True)
    gkpn_model = nn.DataParallel(gkpn_model.cuda())

    state = load_checkpoint('../models/att_weight_kpn/checkpoint',
                            best_or_latest='best')
    gkpn_model.load_state_dict(state['state_dict'])
    gkpn_model.eval()

    wkpn_model = Att_Weight_KPN(color=False,
                                burst_length=8,
                                blind_est=False,
                                kernel_size=[5],
                                sep_conv=False,
                                channel_att=False,
                                spatial_att=False)
    wkpn_model = nn.DataParallel(wkpn_model.cuda())

    state = load_checkpoint('../models/weight_kpn/checkpoint',
                            best_or_latest='best')
    wkpn_model.load_state_dict(state['state_dict'])
    wkpn_model.eval()

    kpn_model = KPN(color=False,
                    burst_length=8,
                    blind_est=False,
                    kernel_size=[5],
                    sep_conv=False,
                    channel_att=False,
                    spatial_att=False)
    kpn_model = nn.DataParallel(kpn_model.cuda())

    state = load_checkpoint('../models/kpn_aug/checkpoint',
                            best_or_latest='best')
    kpn_model.load_state_dict(state['state_dict'])
    kpn_model.eval()

    noise_est = nn.DataParallel(Network(True).cuda())
    state = load_checkpoint('../noise_models', best_or_latest='best')
    noise_est.load_state_dict(state['model'])
    noise_est.eval()

    trans = transforms.ToTensor()
    imgs = []
    with torch.no_grad():
        if os.path.exists(args.img):
            if os.path.isdir(args.img):
                files = os.listdir(args.img)
                # file_index = np.random.permutation(len(files))[:8]
                file_index = range(8)
                for index in file_index:
                    img = Image.open(os.path.join(args.img, files[index]))
                    img = trans(img)

                    img += (0.02 + 0.01 * img) * torch.randn_like(img)
                    imgs.append(img.clamp(0.0, 1.0))
            else:
                raise ValueError('should be a burst of frames, not a image!')
            s_read, s_shot = torch.Tensor([[[args.read]]
                                           ]), torch.Tensor([[[args.shot]]])
            noise_est = torch.sqrt(
                s_read**2 +
                s_shot * torch.max(torch.zeros_like(imgs[0]), imgs[0]))
            imgs.append(noise_est)
            imgs = torch.stack(imgs, dim=0).unsqueeze(0).cuda()

            # imgs = torch.stack(imgs, dim=0).unsqueeze(0).cuda()
            # h, w = imgs.size()[-2:]
            # noise_est = noise_est(imgs[:, 0, ...].expand(1, 3, h, w))[:, 0, ...].unsqueeze(1).unsqueeze(2)
            # imgs = torch.cat([imgs, 15*noise_est], dim=1)

        else:
            raise ValueError('The path for image is not existing.')

        b, N, c, h, w = imgs.size()
        res_wkpn = torch.zeros(c, h, w).cuda()
        res_gkpn = torch.zeros(c, h, w).cuda()
        res_kpn = torch.zeros(c, h, w).cuda()

        res_gkpn_pred_i = torch.zeros(8, c, h, w).cuda()
        res_gkpn_residual = torch.zeros(8, c, h, w).cuda()

        patch_size = 512
        receptiveFiled = 120
        imgs_pad = torch.zeros(b, N, c, h + 2 * receptiveFiled,
                               w + 2 * receptiveFiled)
        imgs_pad[..., receptiveFiled:-receptiveFiled,
                 receptiveFiled:-receptiveFiled] = imgs

        if not os.path.exists('./eval_images_real'):
            os.mkdir('./eval_images_real')

        filename = os.path.basename(args.img)
        filename = os.path.splitext(filename)[0]
        trans = transforms.ToPILImage()

        for channel in range(c):
            for i in range(0, h, patch_size):
                for j in range(0, w, patch_size):
                    if i + patch_size <= h and j + patch_size <= w:
                        # feed = imgs[..., i:i+patch_size, j:j+patch_size].contiguous()
                        feed = imgs_pad[..., channel,
                                        i:i + patch_size + 2 * receptiveFiled,
                                        j:j + patch_size +
                                        2 * receptiveFiled].contiguous()
                    elif i + patch_size <= h:
                        # feed = imgs[..., i:i + patch_size, j:].contiguous()
                        feed = imgs_pad[..., channel,
                                        i:i + patch_size + 2 * receptiveFiled,
                                        j:].contiguous()
                    elif j + patch_size <= w:
                        # feed = imgs[..., i:, j:j+patch_size].contiguous()
                        feed = imgs_pad[..., channel, i:, j:j + patch_size +
                                        2 * receptiveFiled].contiguous()
                    else:
                        # feed = imgs[..., i:, j:].contiguous()
                        feed = imgs_pad[..., channel, i:, j:].contiguous()

                    hs, ws = feed.size()[-2:]
                    hs -= 2 * receptiveFiled
                    ws -= 2 * receptiveFiled

                    feed = padding(feed, patch_size + 2 * receptiveFiled,
                                   patch_size + 2 * receptiveFiled)

                    # _, pred = wkpn_model(feed.view(b, -1, patch_size+2*receptiveFiled, patch_size+2*receptiveFiled), feed[:, 0:8, ...])
                    # res_wkpn[channel, i:i+patch_size, j:j+patch_size] = pred[..., receptiveFiled:hs+receptiveFiled, receptiveFiled:ws+receptiveFiled].squeeze()

                    pred_i, pred, residuals = gkpn_model(
                        feed.view(b, -1, patch_size + 2 * receptiveFiled,
                                  patch_size + 2 * receptiveFiled),
                        feed[:, 0:8, ...])
                    res_gkpn[channel, i:i + patch_size, j:j +
                             patch_size] = pred[..., receptiveFiled:hs +
                                                receptiveFiled,
                                                receptiveFiled:ws +
                                                receptiveFiled].squeeze()
                    res_gkpn_pred_i[:, channel, i:i + patch_size,
                                    j:j + patch_size] = pred_i[
                                        ...,
                                        receptiveFiled:hs + receptiveFiled,
                                        receptiveFiled:ws +
                                        receptiveFiled].squeeze()
                    res_gkpn_residual[:, channel, i:i + patch_size,
                                      j:j + patch_size] = residuals[
                                          ...,
                                          receptiveFiled:hs + receptiveFiled,
                                          receptiveFiled:ws +
                                          receptiveFiled].squeeze()

                    # _, pred = kpn_model(feed.view(b, -1, patch_size + 2 * receptiveFiled, patch_size + 2 * receptiveFiled),
                    #                      feed[:, 0:8, ...])
                    # res_kpn[channel, i:i + patch_size, j:j + patch_size] = pred[..., receptiveFiled:hs + receptiveFiled,
                    #                                                   receptiveFiled:ws + receptiveFiled].squeeze()
                    print('{}, {} OK!'.format(i, j))

        res_kpn = res_kpn.cpu().clamp(0.0, 1.0)
        res_wkpn = res_wkpn.cpu().clamp(0.0, 1.0)
        res_gkpn = res_gkpn.cpu().clamp(0.0, 1.0)

        # trans(res_kpn).save('./eval_images_real/{}_pred_kpn.png'.format(filename), quality=100)
        # trans(res_wkpn).save('./eval_images_real/{}_pred_wkpn.png'.format(filename), quality=100)
        trans(res_gkpn).save(
            './eval_images_real/{}_pred_gkpn.png'.format(filename),
            quality=100)
        trans(imgs[0, 0, ...].cpu()).save(
            './eval_images_real/{}_noisy.png'.format(filename), quality=100)
        print('OK!')
Example #19
0
def eval(args):
    color = True
    print('Eval Process......')
    burst_length = 8

    checkpoint_dir = "checkpoints/" + args.checkpoint
    if not os.path.exists(checkpoint_dir) or len(
            os.listdir(checkpoint_dir)) == 0:
        print('There is no any checkpoint file in path:{}'.format(
            checkpoint_dir))
    # the path for saving eval images
    eval_dir = "eval_img"
    if not os.path.exists(eval_dir):
        os.mkdir(eval_dir)
    files = os.listdir(eval_dir)
    for f in files:
        os.remove(os.path.join(eval_dir, f))

    # dataset and dataloader
    data_set = MultiLoader(noise_dir=args.noise_dir,
                           gt_dir=args.gt_dir,
                           image_size=args.image_size)
    data_loader = DataLoader(data_set,
                             batch_size=1,
                             shuffle=False,
                             num_workers=args.num_workers)

    # model here
    if args.model_type == "attKPN":
        model = Att_KPN_noise(color=color,
                              burst_length=burst_length,
                              blind_est=False,
                              kernel_size=[5],
                              sep_conv=False,
                              channel_att=True,
                              spatial_att=True,
                              upMode="bilinear",
                              core_bias=False)
    elif args.model_type == "attWKPN":
        model = Att_Weight_KPN_noise(color=color,
                                     burst_length=burst_length,
                                     blind_est=False,
                                     kernel_size=[5],
                                     sep_conv=False,
                                     channel_att=True,
                                     spatial_att=True,
                                     upMode="bilinear",
                                     core_bias=False)
    elif args.model_type == "KPN":
        model = KPN_noise(color=color,
                          burst_length=burst_length,
                          blind_est=False,
                          kernel_size=[5],
                          sep_conv=False,
                          channel_att=False,
                          spatial_att=False,
                          upMode="bilinear",
                          core_bias=False)
    else:
        print(" Model type not valid")
        return
    if args.cuda:
        model = model.cuda()

    if args.mGPU:
        model = nn.DataParallel(model)
    # load trained model
    ckpt = load_checkpoint(checkpoint_dir, cuda=args.cuda)
    model.load_state_dict(ckpt['state_dict'])
    print('The model has been loaded from epoch {}, n_iter {}.'.format(
        ckpt['epoch'], ckpt['global_iter']))
    # switch the eval mode
    model.eval()

    # data_loader = iter(data_loader)
    trans = transforms.ToPILImage()

    with torch.no_grad():
        psnr = 0.0
        ssim = 0.0
        for i, (burst_noise, gt) in enumerate(data_loader):
            if i < 100:
                # data = next(data_loader)
                if args.cuda:
                    burst_noise = burst_noise.cuda()
                    gt = gt.cuda()

                pred_i, pred = model(burst_noise)

                if not color:
                    psnr_t = calculate_psnr(pred.unsqueeze(1), gt.unsqueeze(1))
                    ssim_t = calculate_ssim(pred.unsqueeze(1), gt.unsqueeze(1))
                    psnr_noisy = calculate_psnr(
                        burst_noise[:, 0, ...].unsqueeze(1), gt.unsqueeze(1))
                else:
                    psnr_t = calculate_psnr(pred, gt)
                    ssim_t = calculate_ssim(pred, gt)
                    psnr_noisy = calculate_psnr(burst_noise[:, 0, ...], gt)

                psnr += psnr_t
                ssim += ssim_t

                pred = torch.clamp(pred, 0.0, 1.0)

                if args.cuda:
                    pred = pred.cpu()
                    gt = gt.cpu()
                    burst_noise = burst_noise.cpu()

                trans(burst_noise[0, 0, ...].squeeze()).save(os.path.join(
                    eval_dir, '{}_noisy_{:.2f}dB.png'.format(i, psnr_noisy)),
                                                             quality=100)
                trans(pred.squeeze()).save(os.path.join(
                    eval_dir, '{}_pred_{:.2f}dB.png'.format(i, psnr_t)),
                                           quality=100)
                trans(gt.squeeze()).save(os.path.join(eval_dir,
                                                      '{}_gt.png'.format(i)),
                                         quality=100)

                print('{}-th image is OK, with PSNR: {:.2f}dB, SSIM: {:.4f}'.
                      format(i, psnr_t, ssim_t))
            else:
                break
Example #20
0
def test_multi(dir, image_size, args):
    num_workers = 1
    batch_size = 1
    color = True
    burst_length = 8
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if args.model_type == "attKPN":
        model = Att_KPN(color=color,
                        burst_length=burst_length,
                        blind_est=True,
                        kernel_size=[5],
                        sep_conv=False,
                        channel_att=False,
                        spatial_att=False,
                        upMode="bilinear",
                        core_bias=False)
    elif args.model_type == "attWKPN":
        model = Att_Weight_KPN(color=color,
                               burst_length=burst_length,
                               blind_est=True,
                               kernel_size=[5],
                               sep_conv=False,
                               channel_att=False,
                               spatial_att=False,
                               upMode="bilinear",
                               core_bias=False)
    elif args.model_type == "KPN":
        model = KPN(color=color,
                    burst_length=burst_length,
                    blind_est=True,
                    kernel_size=[5],
                    sep_conv=False,
                    channel_att=False,
                    spatial_att=False,
                    upMode="bilinear",
                    core_bias=False)
    else:
        print(" Model type not valid")
        return
    model2 = KPN(color=color,
                 burst_length=burst_length,
                 blind_est=True,
                 kernel_size=[5],
                 sep_conv=False,
                 channel_att=False,
                 spatial_att=False,
                 upMode="bilinear",
                 core_bias=False)
    checkpoint_dir = "checkpoints/" + args.checkpoint
    if not os.path.exists(checkpoint_dir) or len(
            os.listdir(checkpoint_dir)) == 0:
        print('There is no any checkpoint file in path:{}'.format(
            checkpoint_dir))
    # load trained model
    ckpt = load_checkpoint(checkpoint_dir, cuda=device == 'cuda')
    state_dict = ckpt['state_dict']
    new_state_dict = OrderedDict()
    # if not args.mGPU:
    for k, v in state_dict.items():
        name = k[7:]  # remove `module.`
        new_state_dict[name] = v
    # model.load_state_dict(ckpt['state_dict'])
    model.load_state_dict(new_state_dict)

    checkpoint_dir = "checkpoints/" + "kpn"
    if not os.path.exists(checkpoint_dir) or len(
            os.listdir(checkpoint_dir)) == 0:
        print('There is no any checkpoint file in path:{}'.format(
            checkpoint_dir))
    # load trained model
    ckpt = load_checkpoint(checkpoint_dir,
                           cuda=device == 'cuda',
                           best_or_latest=args.load_type)
    state_dict = ckpt['state_dict']
    if not args.cuda:
        new_state_dict = OrderedDict()
        for k, v in state_dict.items():
            name = k[7:]  # remove `module.`
            new_state_dict[name] = v
        model2.load_state_dict(new_state_dict)
    else:
        model.load_state_dict(ckpt['state_dict'])
    print('The model has been loaded from epoch {}, n_iter {}.'.format(
        ckpt['epoch'], ckpt['global_iter']))
    # switch the eval mode
    model.to(device)
    model2.to(device)
    model.eval()
    model2.eval()
    # model= save_dict['state_dict']
    trans = transforms.ToPILImage()
    torch.manual_seed(0)
    for i in range(10):
        image_noise = load_data(dir, image_size, burst_length)
        begin = time.time()
        image_noise_batch = image_noise.to(device)
        print(image_noise_batch.size())
        burst_size = image_noise_batch.size()[1]
        burst_noise = image_noise_batch.to(device)
        if color:
            b, N, c, h, w = burst_noise.size()
            feedData = burst_noise.view(b, -1, h, w)
        else:
            feedData = burst_noise
        # print(feedData.size())
        pred_i, pred = model(feedData, burst_noise[:, 0:burst_length, ...])
        pred_i2, pred2 = model2(feedData, burst_noise[:, 0:burst_length, ...])
        pred = pred.detach().cpu()
        pred2 = pred2.detach().cpu()
        print("Time : ", time.time() - begin)
        print(pred_i.size())
        print(pred.size())
        if args.save_img != '':
            # print(np.array(trans(mf8[0])))
            plt.figure(figsize=(10, 3))
            plt.subplot(1, 3, 1)
            plt.imshow(np.array(trans(pred[0])))
            plt.title("denoise attKPN")
            plt.subplot(1, 3, 2)
            plt.imshow(np.array(trans(pred2[0])))
            plt.title("denoise KPN")
            # plt.show()
            plt.subplot(1, 3, 3)
            plt.imshow(np.array(trans(image_noise[0][0])))
            plt.title("noise ")
            image_name = str(i)
            plt.savefig(os.path.join(
                args.save_img, image_name + "_" + args.checkpoint + '.png'),
                        pad_inches=0)
Example #21
0
data_loader = DataLoader(dataset=data_set,
                         batch_size=1,
                         shuffle=True,
                         num_workers=8)

if 'kpn_5x5' in val_dict:
    kpn_5x5 = KPN(color=color,
                  burst_length=8,
                  blind_est=False,
                  kernel_size=[5],
                  sep_conv=False,
                  channel_att=False,
                  spatial_att=False).cuda()
    kpn_5x5 = nn.DataParallel(kpn_5x5)
    state = load_checkpoint('../models/kpn_aug/checkpoint',
                            best_or_latest='best')
    kpn_5x5.load_state_dict(state['state_dict'])
    print('KPN with 5x5-sized kernel is loaded for iteration {}!'.format(
        state['global_iter']))
    psnr_kpn_5x5, ssim_kpn_5x5 = [], []

if 'kpn_7x7' in val_dict:
    kpn_7x7 = KPN(color=color,
                  burst_length=8,
                  blind_est=False,
                  kernel_size=[21],
                  sep_conv=True,
                  channel_att=False,
                  spatial_att=False).cuda()
    kpn_7x7 = nn.DataParallel(kpn_7x7)
    state = load_checkpoint('../models/kpn_aug_15x15/checkpoint',
Example #22
0
def test_multi(args):
    color = True
    burst_length = args.burst_length
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if args.model_type == "attKPN":
        model = Att_KPN_DGF(color=color,
                            burst_length=burst_length,
                            blind_est=True,
                            kernel_size=[5],
                            sep_conv=False,
                            channel_att=True,
                            spatial_att=True,
                            upMode="bilinear",
                            core_bias=False)
    elif args.model_type == "attKPN_Wave":
        model = Att_KPN_Wavelet_DGF(color=color,
                                    burst_length=burst_length,
                                    blind_est=True,
                                    kernel_size=[5],
                                    sep_conv=False,
                                    channel_att=True,
                                    spatial_att=True,
                                    upMode="bilinear",
                                    core_bias=False)
    elif args.model_type == "attWKPN":
        model = Att_Weight_KPN_DGF(color=color,
                                   burst_length=burst_length,
                                   blind_est=True,
                                   kernel_size=[5],
                                   sep_conv=False,
                                   channel_att=True,
                                   spatial_att=True,
                                   upMode="bilinear",
                                   core_bias=False)
    elif args.model_type == "KPN":
        model = KPN_DGF(color=color,
                        burst_length=burst_length,
                        blind_est=True,
                        kernel_size=[5],
                        sep_conv=False,
                        channel_att=False,
                        spatial_att=False,
                        upMode="bilinear",
                        core_bias=False)
    else:
        print(" Model type not valid")
        return
    checkpoint_dir = "checkpoints/" + args.checkpoint
    if not os.path.exists(checkpoint_dir) or len(
            os.listdir(checkpoint_dir)) == 0:
        print('There is no any checkpoint file in path:{}'.format(
            checkpoint_dir))
    # load trained model
    ckpt = load_checkpoint(checkpoint_dir,
                           cuda=device == 'cuda',
                           best_or_latest=args.load_type)
    state_dict = ckpt['state_dict']

    # if not args.cuda:
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        name = k[7:]  # remove `module.`
        new_state_dict[name] = v
    model.load_state_dict(new_state_dict)
    # else:
    #     model.load_state_dict(ckpt['state_dict'])

    model.to(device)
    print('The model has been loaded from epoch {}, n_iter {}.'.format(
        ckpt['epoch'], ckpt['global_iter']))
    # switch the eval mode
    model.eval()
    # model= save_dict['state_dict']
    trans = transforms.ToPILImage()
    torch.manual_seed(0)
    all_noisy_imgs = scipy.io.loadmat(
        args.noise_dir)['ValidationNoisyBlocksSrgb']
    all_clean_imgs = scipy.io.loadmat(args.gt)['ValidationGtBlocksSrgb']
    i_imgs, i_blocks, _, _, _ = all_noisy_imgs.shape
    psnrs = []
    ssims = []
    for i_img in range(i_imgs):
        for i_block in range(i_blocks):
            image_noise = transforms.ToTensor()(Image.fromarray(
                all_noisy_imgs[i_img][i_block]))
            image_noise = transforms.ToTensor()(Image.fromarray(
                all_noisy_imgs[i_img][i_block]))
            image_noise, image_noise_hr = load_data(image_noise, burst_length)
            image_noise_hr = image_noise_hr.to(device)
            # begin = time.time()
            image_noise = image_noise.to(device)
            # print(image_noise_batch.size())
            # burst_size = image_noise.size()[1]
            # print(burst_noise.size())
            # print(image_noise_hr.size())
            if color:
                b, N, c, h, w = image_noise.size()
                feedData = image_noise.view(b, -1, h, w)
            else:
                feedData = image_noise
            # print(feedData.size())
            pred_i, pred = model(feedData, image_noise[:, 0:burst_length, ...],
                                 image_noise_hr)
            del pred_i
            pred = pred.detach().cpu()
            # print("Time : ", time.time()-begin)
            gt = transforms.ToTensor()(Image.fromarray(
                all_clean_imgs[i_img][i_block]))
            gt = gt.unsqueeze(0)
            # print(pred_i.size())
            # print(pred[0].size())
            psnr_t = calculate_psnr(pred, gt)
            ssim_t = calculate_ssim(pred, gt)
            psnrs.append(psnr_t)
            ssims.append(ssim_t)
            print(i_img, "  ", i_block, "   UP   :  PSNR : ", str(psnr_t),
                  " :  SSIM : ", str(ssim_t))
            if args.save_img != '':
                if not os.path.exists(args.save_img):
                    os.makedirs(args.save_img)
                plt.figure(figsize=(15, 15))
                plt.imshow(np.array(trans(pred[0])))
                plt.title("denoise KPN DGF " + args.model_type, fontsize=25)
                image_name = str(i_img) + "_" + str(i_block)
                plt.axis("off")
                plt.suptitle(image_name + "   UP   :  PSNR : " + str(psnr_t) +
                             " :  SSIM : " + str(ssim_t),
                             fontsize=25)
                plt.savefig(os.path.join(
                    args.save_img,
                    image_name + "_" + args.checkpoint + '.png'),
                            pad_inches=0)
        """
        if args.save_img:
            # print(np.array(trans(mf8[0])))
            plt.figure(figsize=(30, 9))
            plt.subplot(1,3,1)
            plt.imshow(np.array(trans(pred[0])))
            plt.title("denoise DGF "+args.model_type, fontsize=26)
            plt.subplot(1,3,2)
            plt.imshow(np.array(trans(gt[0])))
            plt.title("gt ", fontsize=26)
            plt.subplot(1,3,3)
            plt.imshow(np.array(trans(image_noise_hr[0])))
            plt.title("noise ", fontsize=26)
            plt.axis("off")
            plt.suptitle(str(i)+"   UP   :  PSNR : "+ str(psnr_t)+" :  SSIM : "+ str(ssim_t), fontsize=26)
            plt.savefig("checkpoints/22_DGF_" + args.checkpoint+str(i)+'.png',pad_inches=0)
        """
    print("   AVG   :  PSNR : " + str(np.mean(psnrs)) + " :  SSIM : " +
          str(np.mean(ssims)))
Example #23
0
def test_multi(args):
    color = True
    burst_length = args.burst_length
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if args.model_type == "attKPN":
        model = Att_KPN_DGF(color=color,
                            burst_length=burst_length,
                            blind_est=True,
                            kernel_size=[5],
                            sep_conv=False,
                            channel_att=True,
                            spatial_att=True,
                            upMode="bilinear",
                            core_bias=False)
    elif args.model_type == "attKPN_Wave":
        model = Att_KPN_Wavelet_DGF(color=color,
                                    burst_length=burst_length,
                                    blind_est=True,
                                    kernel_size=[5],
                                    sep_conv=False,
                                    channel_att=True,
                                    spatial_att=True,
                                    upMode="bilinear",
                                    core_bias=False)
    elif args.model_type == "attWKPN":
        model = Att_Weight_KPN_DGF(color=color,
                                   burst_length=burst_length,
                                   blind_est=True,
                                   kernel_size=[5],
                                   sep_conv=False,
                                   channel_att=True,
                                   spatial_att=True,
                                   upMode="bilinear",
                                   core_bias=False)
    elif args.model_type == "KPN":
        model = KPN_DGF(color=color,
                        burst_length=burst_length,
                        blind_est=True,
                        kernel_size=[5],
                        sep_conv=False,
                        channel_att=False,
                        spatial_att=False,
                        upMode="bilinear",
                        core_bias=False)
    else:
        print(" Model type not valid")
        return
    checkpoint_dir = args.checkpoint
    if not os.path.exists(checkpoint_dir) or len(
            os.listdir(checkpoint_dir)) == 0:
        print('There is no any checkpoint file in path:{}'.format(
            checkpoint_dir))
    # load trained model
    ckpt = load_checkpoint(checkpoint_dir,
                           cuda=device == 'cuda',
                           best_or_latest=args.load_type)
    state_dict = ckpt['state_dict']

    # if not args.cuda:
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        name = k[7:]  # remove `module.`
        new_state_dict[name] = v
    model.load_state_dict(new_state_dict)
    # else:
    #     model.load_state_dict(ckpt['state_dict'])

    model.to(device)
    print('The model has been loaded from epoch {}, n_iter {}.'.format(
        ckpt['epoch'], ckpt['global_iter']))
    # switch the eval mode
    model.eval()
    # model= save_dict['state_dict']
    trans = transforms.ToPILImage()
    torch.manual_seed(0)
    all_noisy_imgs = scipy.io.loadmat(
        args.noise_dir)['BenchmarkNoisyBlocksSrgb']
    mat_re = np.zeros_like(all_noisy_imgs)
    # all_clean_imgs = scipy.io.loadmat(args.gt)['siddplus_valid_gt_srgb']
    i_imgs, i_blocks, _, _, _ = all_noisy_imgs.shape
    psnrs = []
    ssims = []
    for i_img in range(i_imgs):
        for i_block in range(i_blocks):
            image_noise = transforms.ToTensor()(Image.fromarray(
                all_noisy_imgs[i_img][i_block]))
            image_noise, image_noise_hr = load_data(image_noise, burst_length)
            image_noise_hr = image_noise_hr.to(device)
            # begin = time.time()
            image_noise_batch = image_noise.to(device)
            # print(image_noise_batch.size())
            burst_size = image_noise_batch.size()[1]
            burst_noise = image_noise_batch.to(device)
            # print(burst_noise.size())
            # print(image_noise_hr.size())
            if color:
                b, N, c, h, w = burst_noise.size()
                feedData = burst_noise.view(b, -1, h, w)
            else:
                feedData = burst_noise
            # print(feedData.size())
            pred_i, pred = model(feedData, burst_noise[:, 0:burst_length, ...],
                                 image_noise_hr)
            # del pred_i
            pred = pred.detach().cpu()

            mat_re[i_img][i_block] = np.array(trans(pred[0]))

    return mat_re
Example #24
0
def train(config, num_workers, num_threads, cuda, restart_train, mGPU):
    # torch.set_num_threads(num_threads)

    train_config = config['training']
    arch_config = config['architecture']

    batch_size = train_config['batch_size']
    lr = train_config['learning_rate']
    weight_decay = train_config['weight_decay']
    decay_step = train_config['decay_steps']
    lr_decay = train_config['lr_decay']

    n_epoch = train_config['num_epochs']
    use_cache = train_config['use_cache']

    print('Configs:', config)
    # checkpoint path
    checkpoint_dir = train_config['checkpoint_dir']
    if not os.path.exists(checkpoint_dir):
        os.makedirs(checkpoint_dir)
    # logs path
    logs_dir = train_config['logs_dir']
    if not os.path.exists(logs_dir):
        os.makedirs(logs_dir)
    shutil.rmtree(logs_dir)
    log_writer = SummaryWriter(logs_dir)

    # dataset and dataloader
    data_set = TrainDataSet(train_config['dataset_configs'],
                            img_format='.bmp',
                            degamma=True,
                            color=False,
                            blind=arch_config['blind_est'])
    data_loader = DataLoader(data_set,
                             batch_size=batch_size,
                             shuffle=True,
                             num_workers=num_workers)
    dataset_config = read_config(train_config['dataset_configs'],
                                 _configspec_path())['dataset_configs']

    # model here
    model = KPN(color=False,
                burst_length=dataset_config['burst_length'],
                blind_est=arch_config['blind_est'],
                kernel_size=list(map(int, arch_config['kernel_size'].split())),
                sep_conv=arch_config['sep_conv'],
                channel_att=arch_config['channel_att'],
                spatial_att=arch_config['spatial_att'],
                upMode=arch_config['upMode'],
                core_bias=arch_config['core_bias'])
    if cuda:
        model = model.cuda()

    if mGPU:
        model = nn.DataParallel(model)
    model.train()

    # loss function here
    loss_func = LossFunc(coeff_basic=1.0,
                         coeff_anneal=1.0,
                         gradient_L1=True,
                         alpha=arch_config['alpha'],
                         beta=arch_config['beta'])

    # Optimizer here
    if train_config['optimizer'] == 'adam':
        optimizer = optim.Adam(model.parameters(), lr=lr)
    elif train_config['optimizer'] == 'sgd':
        optimizer = optim.SGD(model.parameters(),
                              lr=lr,
                              momentum=0.9,
                              weight_decay=weight_decay)
    else:
        raise ValueError(
            "Optimizer must be 'sgd' or 'adam', but received {}.".format(
                train_config['optimizer']))
    optimizer.zero_grad()

    # learning rate scheduler here
    scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=lr_decay)

    average_loss = MovingAverage(train_config['save_freq'])
    if not restart_train:
        try:
            checkpoint = load_checkpoint(checkpoint_dir, 'best')
            start_epoch = checkpoint['epoch']
            global_step = checkpoint['global_iter']
            best_loss = checkpoint['best_loss']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            scheduler.load_state_dict(checkpoint['lr_scheduler'])
            print('=> loaded checkpoint (epoch {}, global_step {})'.format(
                start_epoch, global_step))
        except:
            start_epoch = 0
            global_step = 0
            best_loss = np.inf
            print('=> no checkpoint file to be loaded.')
    else:
        start_epoch = 0
        global_step = 0
        best_loss = np.inf
        if os.path.exists(checkpoint_dir):
            pass
            # files = os.listdir(checkpoint_dir)
            # for f in files:
            #     os.remove(os.path.join(checkpoint_dir, f))
        else:
            os.mkdir(checkpoint_dir)
        print('=> training')

    burst_length = dataset_config['burst_length']
    data_length = burst_length if arch_config['blind_est'] else burst_length + 1
    patch_size = dataset_config['patch_size']

    for epoch in range(start_epoch, n_epoch):
        epoch_start_time = time.time()
        # decay the learning rate
        lr_cur = [param['lr'] for param in optimizer.param_groups]
        if lr_cur[0] > 5e-6:
            scheduler.step()
        else:
            for param in optimizer.param_groups:
                param['lr'] = 5e-6
        print(
            '=' * 20,
            'lr={}'.format([param['lr'] for param in optimizer.param_groups]),
            '=' * 20)
        t1 = time.time()
        for step, (burst_noise, gt, white_level) in enumerate(data_loader):
            if cuda:
                burst_noise = burst_noise.cuda()
                gt = gt.cuda()
            # print('white_level', white_level, white_level.size())

            #
            pred_i, pred = model(burst_noise, burst_noise[:, 0:burst_length,
                                                          ...], white_level)

            #
            loss_basic, loss_anneal = loss_func(sRGBGamma(pred_i),
                                                sRGBGamma(pred), sRGBGamma(gt),
                                                global_step)
            loss = loss_basic + loss_anneal
            # backward
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            # update the average loss
            average_loss.update(loss)
            # calculate PSNR
            psnr = calculate_psnr(pred.unsqueeze(1), gt.unsqueeze(1))
            ssim = calculate_ssim(pred.unsqueeze(1), gt.unsqueeze(1))

            # add scalars to tensorboardX
            log_writer.add_scalar('loss_basic', loss_basic, global_step)
            log_writer.add_scalar('loss_anneal', loss_anneal, global_step)
            log_writer.add_scalar('loss_total', loss, global_step)
            log_writer.add_scalar('psnr', psnr, global_step)
            log_writer.add_scalar('ssim', ssim, global_step)

            # print
            print(
                '{:-4d}\t| epoch {:2d}\t| step {:4d}\t| loss_basic: {:.4f}\t| loss_anneal: {:.4f}\t|'
                ' loss: {:.4f}\t| PSNR: {:.2f}dB\t| SSIM: {:.4f}\t| time:{:.2f} seconds.'
                .format(global_step, epoch, step, loss_basic, loss_anneal,
                        loss, psnr, ssim,
                        time.time() - t1))
            t1 = time.time()
            # global_step
            global_step += 1

            if global_step % train_config['save_freq'] == 0:
                if average_loss.get_value() < best_loss:
                    is_best = True
                    best_loss = average_loss.get_value()
                else:
                    is_best = False

                save_dict = {
                    'epoch': epoch,
                    'global_iter': global_step,
                    'state_dict': model.state_dict(),
                    'best_loss': best_loss,
                    'optimizer': optimizer.state_dict(),
                    'lr_scheduler': scheduler.state_dict()
                }
                save_checkpoint(save_dict,
                                is_best,
                                checkpoint_dir,
                                global_step,
                                max_keep=train_config['ckpt_to_keep'])

        print('Epoch {} is finished, time elapsed {:.2f} seconds.'.format(
            epoch,
            time.time() - epoch_start_time))
Example #25
0
def test_multi(args):
    color = True
    burst_length = args.burst_length
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if args.model_type == "attKPN":
        model = Att_KPN_DGF(color=color,
                            burst_length=burst_length,
                            blind_est=True,
                            kernel_size=[5],
                            sep_conv=False,
                            channel_att=True,
                            spatial_att=True,
                            upMode="bilinear",
                            core_bias=False)
    elif args.model_type == "attKPN_Wave":
        model = Att_KPN_Wavelet_DGF(color=color,
                                    burst_length=burst_length,
                                    blind_est=True,
                                    kernel_size=[5],
                                    sep_conv=False,
                                    channel_att=True,
                                    spatial_att=True,
                                    upMode="bilinear",
                                    core_bias=False)
    elif args.model_type == "attWKPN":
        model = Att_Weight_KPN_DGF(color=color,
                                   burst_length=burst_length,
                                   blind_est=True,
                                   kernel_size=[5],
                                   sep_conv=False,
                                   channel_att=True,
                                   spatial_att=True,
                                   upMode="bilinear",
                                   core_bias=False)
    elif args.model_type == "KPN":
        model = KPN_DGF(color=color,
                        burst_length=burst_length,
                        blind_est=True,
                        kernel_size=[5],
                        sep_conv=False,
                        channel_att=False,
                        spatial_att=False,
                        upMode="bilinear",
                        core_bias=False)
    else:
        print(" Model type not valid")
        return
    checkpoint_dir = "checkpoints/" + args.checkpoint
    if not os.path.exists(checkpoint_dir) or len(
            os.listdir(checkpoint_dir)) == 0:
        print('There is no any checkpoint file in path:{}'.format(
            checkpoint_dir))
    # load trained model
    ckpt = load_checkpoint(checkpoint_dir,
                           cuda=device == 'cuda',
                           best_or_latest=args.load_type)
    state_dict = ckpt['state_dict']

    # if not args.cuda:
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        name = k[7:]  # remove `module.`
        new_state_dict[name] = v
    model.load_state_dict(new_state_dict)
    # else:
    #     model.load_state_dict(ckpt['state_dict'])

    model.to(device)
    print('The model has been loaded from epoch {}, n_iter {}.'.format(
        ckpt['epoch'], ckpt['global_iter']))
    # switch the eval mode
    model.eval()
    # model= save_dict['state_dict']
    trans = transforms.ToPILImage()
    torch.manual_seed(0)
    noisy_path = sorted(glob.glob(args.noise_dir + "/*.png"))
    clean_path = [i.replace("noisy", "clean") for i in noisy_path]
    upscale_factor = int(math.sqrt(burst_length))
    for i in range(len(noisy_path)):
        image_noise, image_noise_hr = load_data(noisy_path[i], burst_length)
        image_noise_hr = image_noise_hr.to(device)
        # begin = time.time()
        image_noise_batch = image_noise.to(device)
        # print(image_noise_batch.size())
        burst_size = image_noise_batch.size()[1]
        burst_noise = image_noise_batch.to(device)
        # print(burst_noise.size())
        # print(image_noise_hr.size())
        if color:
            b, N, c, h, w = burst_noise.size()
            feedData = burst_noise.view(b, -1, h, w)
        else:
            feedData = burst_noise
        # print(feedData.size())
        pred_i, pred = model(feedData, burst_noise[:, 0:burst_length, ...],
                             image_noise_hr)
        # del pred_i
        pred_i = pred_i.detach().cpu()
        print(pred_i.size())
        pred_full = pixel_shuffle(pred_i, upscale_factor)
        pred_full = pred_full
        print(pred_full.size())

        pred = pred.detach().cpu()
        # print("Time : ", time.time()-begin)
        gt = transforms.ToTensor()(Image.open(clean_path[i]).convert('RGB'))
        gt = gt.unsqueeze(0)
        # print(pred_i.size())
        # print(pred[0].size())
        psnr_t = calculate_psnr(pred, gt)
        ssim_t = calculate_ssim(pred, gt)
        print(i, "  pixel_shuffle UP   :  PSNR : ",
              str(calculate_psnr(pred_full, gt)), " :  SSIM : ",
              str(calculate_ssim(pred_full, gt)))
        print(i, "   UP   :  PSNR : ", str(psnr_t), " :  SSIM : ", str(ssim_t))
        if args.save_img != '':
            if not os.path.exists(args.save_img):
                os.makedirs(args.save_img)
            plt.figure(figsize=(15, 15))
            plt.imshow(np.array(trans(pred[0])))
            plt.title("denoise KPN DGF " + args.model_type, fontsize=25)
            image_name = noisy_path[i].split("/")[-1].split(".")[0]
            plt.axis("off")
            plt.suptitle(image_name + "   UP   :  PSNR : " + str(psnr_t) +
                         " :  SSIM : " + str(ssim_t),
                         fontsize=25)
            plt.savefig(os.path.join(
                args.save_img, image_name + "_" + args.checkpoint + '.png'),
                        pad_inches=0)
        """
Example #26
0
# from convert.converter import torch2onnx, onnx2keras, keras2tflite
# from denoiser.networks.denoising_rgb import DenoiseNet
# from denoiser.utils import load_checkpoint
from model.MIRNet import MIRNet
from utils.training_util import save_checkpoint, MovingAverage, load_checkpoint

img_path = '/home/dell/Downloads/FullTest/noisy/2_1.png'
model_path = '../../denoiser/pretrained_models/denoising/sidd_rgb.pth'
output_path = 'models/denoiser_rgb.onnx'

input_node_names = ['input_image']
output_nodel_names = ['output_image']

# torch_model = DenoiseNet()
# load_checkpoint(torch_model, model_path, 'cpu')
checkpoint = load_checkpoint("../checkpoints/mir/", False, 'latest')
state_dict = checkpoint['state_dict']
torch_model = MIRNet()
print(torch_model)
exit(0)
torch_model.load_state_dict(state_dict)
torch_model.eval()
img = imageio.imread(img_path)
img = img[0:256, 0:256, :]
print(img.shape)
img = np.asarray(img, dtype=np.float32) / 255.

img_tensor = torch.from_numpy(img)
img_tensor = img_tensor.permute(2, 0, 1).unsqueeze(0)

print('Test forward pass')
def test_multi(args):
    color = True
    burst_length = 8
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if args.model_type == "attKPN":
        model = Att_KPN(color=color,
                        burst_length=burst_length,
                        blind_est=True,
                        kernel_size=[5],
                        sep_conv=False,
                        channel_att=True,
                        spatial_att=True,
                        upMode="bilinear",
                        core_bias=False)
    elif args.model_type == "attWKPN":
        model = Att_Weight_KPN(color=color,
                               burst_length=burst_length,
                               blind_est=True,
                               kernel_size=[5],
                               sep_conv=False,
                               channel_att=True,
                               spatial_att=True,
                               upMode="bilinear",
                               core_bias=False)
    elif args.model_type == "KPN":
        model = KPN(color=color,
                    burst_length=burst_length,
                    blind_est=True,
                    kernel_size=[5],
                    sep_conv=False,
                    channel_att=False,
                    spatial_att=False,
                    upMode="bilinear",
                    core_bias=False)
    else:
        print(" Model type not valid")
        return
    # model2 = KPN(
    #     color=color,
    #     burst_length=burst_length,
    #     blind_est=True,
    #     kernel_size=[5],
    #     sep_conv=False,
    #     channel_att=False,
    #     spatial_att=False,
    #     upMode="bilinear",
    #     core_bias=False
    # )
    checkpoint_dir = "checkpoints/" + args.checkpoint
    if not os.path.exists(checkpoint_dir) or len(
            os.listdir(checkpoint_dir)) == 0:
        print('There is no any checkpoint file in path:{}'.format(
            checkpoint_dir))
    # load trained model
    ckpt = load_checkpoint(checkpoint_dir,
                           cuda=device == 'cuda',
                           best_or_latest=args.load_type)
    state_dict = ckpt['state_dict']
    # if not args.cuda:
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        name = k[7:]  # remove `module.`
        new_state_dict[name] = v
    model.load_state_dict(new_state_dict)
    # else:
    #     model.load_state_dict(ckpt['state_dict'])

    #############################################
    # checkpoint_dir = "checkpoints/" + "kpn"
    # if not os.path.exists(checkpoint_dir) or len(os.listdir(checkpoint_dir)) == 0:
    #     print('There is no any checkpoint file in path:{}'.format(checkpoint_dir))
    # # load trained model
    # ckpt = load_checkpoint(checkpoint_dir,cuda=device=='cuda')
    # state_dict = ckpt['state_dict']
    # new_state_dict = OrderedDict()
    # if not args.cuda:
    #     for k, v in state_dict.items():
    #         name = k[7:]  # remove `module.`
    #         new_state_dict[name] = v
    # # model.load_state_dict(ckpt['state_dict'])
    # model2.load_state_dict(new_state_dict)
    ###########################################
    print('The model has been loaded from epoch {}, n_iter {}.'.format(
        ckpt['epoch'], ckpt['global_iter']))
    # switch the eval mode
    model.to(device)
    model.eval()
    # model2.eval()
    # model= save_dict['state_dict']
    trans = transforms.ToPILImage()
    torch.manual_seed(0)
    noisy_path = sorted(glob.glob(args.noise_dir + "/*.png"))
    clean_path = [i.replace("noisy", "clean") for i in noisy_path]
    for i in range(len(noisy_path)):
        image_noise = load_data(noisy_path[i], burst_length)
        begin = time.time()
        image_noise_batch = image_noise.to(device)
        # print(image_noise.size())
        # print(image_noise_batch.size())
        burst_noise = image_noise_batch.to(device)
        if color:
            b, N, c, h, w = burst_noise.size()
            feedData = burst_noise.view(b, -1, h, w)
        else:
            feedData = burst_noise
        # print(feedData.size())
        pred_i, pred = model(feedData, burst_noise[:, 0:burst_length, ...])
        del pred_i
        # pred_i2, pred2 = model2(feedData, burst_noise[:, 0:burst_length, ...])
        # print("Time : ", time.time()-begin)
        pred = pred.detach().cpu()
        gt = transforms.ToTensor()(Image.open(clean_path[i]).convert('RGB'))
        # print(pred_i.size())
        # print(pred.size())
        # print(gt.size())
        gt = gt.unsqueeze(0)
        _, _, h_hr, w_hr = gt.size()
        _, _, h_lr, w_lr = pred.size()
        gt_down = F.interpolate(gt, (h_lr, w_lr),
                                mode='bilinear',
                                align_corners=True)
        pred_up = F.interpolate(pred, (h_hr, w_hr),
                                mode='bilinear',
                                align_corners=True)
        # print("After interpolate")
        # print(pred_up.size())
        # print(gt_down.size())
        psnr_t_up = calculate_psnr(pred_up, gt)
        ssim_t_up = calculate_ssim(pred_up, gt)
        psnr_t_down = calculate_psnr(pred, gt_down)
        ssim_t_down = calculate_ssim(pred, gt_down)
        print(i, "   UP   :  PSNR : ", str(psnr_t_up), " :  SSIM : ",
              str(ssim_t_up), " : DOWN   :  PSNR : ", str(psnr_t_down),
              " :  SSIM : ", str(ssim_t_down))

        if args.save_img != '':
            if not os.path.exists(args.save_img):
                os.makedirs(args.save_img)
            plt.figure(figsize=(15, 15))
            plt.imshow(np.array(trans(pred_up[0])))
            plt.title("denoise KPN split " + args.model_type, fontsize=25)
            image_name = noisy_path[i].split("/")[-1].split(".")[0]
            plt.axis("off")
            plt.suptitle(image_name + "   UP   :  PSNR : " + str(psnr_t_up) +
                         " :  SSIM : " + str(ssim_t_up),
                         fontsize=25)
            plt.savefig(os.path.join(
                args.save_img, image_name + "_" + args.checkpoint + '.png'),
                        pad_inches=0)

        # print(np.array(trans(mf8[0])))
        """
Example #28
0
def eval(args):
    color = args.color
    print('Eval Process......')
    burst_length = args.burst_length
    # print(args.checkpoint)
    checkpoint_dir = "checkpoints/" + args.checkpoint
    if not os.path.exists(checkpoint_dir) or len(
            os.listdir(checkpoint_dir)) == 0:
        print('There is no any checkpoint file in path:{}'.format(
            checkpoint_dir))
    # the path for saving eval images
    eval_dir = "eval_img"
    if not os.path.exists(eval_dir):
        os.mkdir(eval_dir)

    # dataset and dataloader
    data_set = SingleLoader_DGF(noise_dir=args.noise_dir,
                                gt_dir=args.gt_dir,
                                image_size=args.image_size,
                                burst_length=burst_length)
    data_loader = DataLoader(data_set,
                             batch_size=1,
                             shuffle=False,
                             num_workers=args.num_workers)

    # model here
    if args.model_type == "attKPN":
        model = Att_KPN_DGF(color=color,
                            burst_length=burst_length,
                            blind_est=True,
                            kernel_size=[5],
                            sep_conv=False,
                            channel_att=False,
                            spatial_att=False,
                            upMode="bilinear",
                            core_bias=False)
    elif args.model_type == "attWKPN":
        model = Att_Weight_KPN_DGF(color=color,
                                   burst_length=burst_length,
                                   blind_est=True,
                                   kernel_size=[5],
                                   sep_conv=False,
                                   channel_att=False,
                                   spatial_att=False,
                                   upMode="bilinear",
                                   core_bias=False)
    elif args.model_type == "KPN":
        model = KPN_DGF(color=color,
                        burst_length=burst_length,
                        blind_est=True,
                        kernel_size=[5],
                        sep_conv=False,
                        channel_att=False,
                        spatial_att=False,
                        upMode="bilinear",
                        core_bias=False)
    else:
        print(" Model type not valid")
        return
    if args.cuda:
        model = model.cuda()

    if args.mGPU:
        model = nn.DataParallel(model)
    # load trained model
    ckpt = load_checkpoint(checkpoint_dir,
                           cuda=args.cuda,
                           best_or_latest=args.load_type)

    state_dict = ckpt['state_dict']
    if not args.mGPU:
        new_state_dict = OrderedDict()
        if not args.cuda:
            for k, v in state_dict.items():
                name = k[7:]  # remove `module.`
                new_state_dict[name] = v
        model.load_state_dict(new_state_dict)
    else:
        model.load_state_dict(ckpt['state_dict'])
    print('The model has been loaded from epoch {}, n_iter {}.'.format(
        ckpt['epoch'], ckpt['global_iter']))
    # switch the eval mode
    model.eval()

    # data_loader = iter(data_loader)
    trans = transforms.ToPILImage()

    with torch.no_grad():
        psnr = 0.0
        ssim = 0.0
        torch.manual_seed(0)
        for i, (image_noise_hr, image_noise_lr,
                image_gt_hr) in enumerate(data_loader):
            if i < 100:
                # data = next(data_loader)
                if args.cuda:
                    burst_noise = image_noise_lr.cuda()
                    gt = image_gt_hr.cuda()
                else:
                    burst_noise = image_noise_lr
                    gt = image_gt_hr
                if color:
                    b, N, c, h, w = image_noise_lr.size()
                    feedData = image_noise_lr.view(b, -1, h, w)
                else:
                    feedData = image_noise_lr
                pred_i, pred = model(feedData, burst_noise[:, 0:burst_length,
                                                           ...],
                                     image_noise_hr)

                psnr_t = calculate_psnr(pred, gt)
                ssim_t = calculate_ssim(pred, gt)
                print("PSNR : ", str(psnr_t), " :  SSIM : ", str(ssim_t))

                pred = torch.clamp(pred, 0.0, 1.0)

                if args.cuda:
                    pred = pred.cpu()
                    gt = gt.cpu()
                    burst_noise = burst_noise.cpu()
                if args.save_img:
                    trans(burst_noise[0, 0, ...].squeeze()).save(os.path.join(
                        eval_dir, '{}_noisy.png'.format(i)),
                                                                 quality=100)
                    trans(pred.squeeze()).save(os.path.join(
                        eval_dir, '{}_pred_{:.2f}dB.png'.format(i, psnr_t)),
                                               quality=100)
                    trans(gt.squeeze()).save(os.path.join(
                        eval_dir, '{}_gt.png'.format(i)),
                                             quality=100)
            else:
                break
Example #29
0
def train(config, restart_training, num_workers, num_threads):
    torch.set_num_threads(num_threads)
    print("Using {} CPU threads".format(torch.get_num_threads()))

    # TODO: de-hardcode this one.
    N_CHANNEL = 3
    train_config = config["training"]

    batch_size = train_config["batch_size"]
    lr = train_config["learning_rate"]
    w_decay = train_config["weight_decay"]
    step_size = train_config["decay_steps"]
    gamma = train_config["lr_decay"]
    betas = (train_config["beta1"], train_config["beta2"])
    n_epochs = train_config["num_epochs"]

    dataset_configs = train_config["dataset_configs"]
    use_cache = train_config["use_cache"]

    print("Configs:", config)
    # create dir for model
    checkpoint_dir = train_config["checkpoint_dir"]
    if not os.path.exists(checkpoint_dir):
        os.makedirs(checkpoint_dir)

    logger = Logger(train_config["logs_dir"])

    use_gpu = torch.cuda.is_available()
    num_gpu = list(range(torch.cuda.device_count()))

    print("Using On the fly TRAIN datasets")
    train_data = OnTheFlyDataset(train_config["dataset_configs"],
                                 im_size=(train_config["image_width"],
                                          train_config["image_height"]),
                                 use_cache=use_cache)

    train_loader = DataLoader(train_data,
                              batch_size=batch_size,
                              shuffle=True,
                              num_workers=num_workers)

    model = get_model(config["architecture"])

    l1_loss = nn.SmoothL1Loss()

    if use_gpu:
        ts = time.time()
        model = model.cuda()
        model = nn.DataParallel(model, device_ids=num_gpu)
        print("Finish cuda loading, time elapsed {}".format(time.time() - ts))

    # for sanity check
    all_parameters = [
        p for n, p in model.named_parameters() if p.requires_grad
    ]
    if train_config["optimizer"] == "adam":
        print("Using Adam.")
        optimizer = optim.Adam([
            {
                'params': all_parameters
            },
        ],
                               lr=lr,
                               betas=betas,
                               weight_decay=w_decay,
                               amsgrad=True)
    elif train_config["optimizer"] == "sgd":
        print("Using SGD.")
        optimizer = optim.SGD([
            {
                'params': all_parameters
            },
        ],
                              lr=lr,
                              momentum=betas[0],
                              weight_decay=w_decay)
    else:
        raise ValueError(
            "Optimizer must be 'sgd' or 'adam', received '{}'".format(
                train_config["optimizer"]))

    scheduler = lr_scheduler.StepLR(optimizer,
                                    step_size=step_size,
                                    gamma=gamma)

    n_global_iter = 0
    average_loss = MovingAverage(train_config["n_loss_average"])
    best_loss = np.inf
    checkpoint_loaded = False
    if not restart_training:
        try:
            checkpoint = load_checkpoint(checkpoint_dir, 'best')
            start_epoch = checkpoint['epoch']
            n_global_iter = checkpoint['global_iter']
            best_loss = checkpoint['best_loss']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            checkpoint_loaded = True
            print("=> loaded checkpoint (epoch {})".format(
                checkpoint['epoch']))
        except:
            start_epoch = 0
            n_global_iter = 0
            best_loss = np.inf
            print("=> load checkpoint failed, training from scratch")
    else:
        start_epoch = 0
        print("=> training from scratch")

    for epoch in range(start_epoch, n_epochs):
        scheduler.step()
        ts = time.time()
        t4 = None
        t_generate_data = []
        t_train_disc = []
        t_train_gen = []
        t_vis = []
        t_save = []

        for iter, batch in enumerate(train_loader):
            if t4 is not None:
                # collect information and print out average time.
                t0_old = t0
            t0 = time.time()
            if t4 is not None:
                t_generate_data.append(t0 - t4)
                t_train_disc.append(t1 - t0_old)
                t_train_gen.append(t2 - t1)
                t_vis.append(t3 - t2)
                t_save.append(t4 - t3)
                N_report = 100
                N_print = 1000
                if (iter % N_report) == 0:
                    t_generate_data = np.mean(t_generate_data)
                    t_train_disc = np.mean(t_train_disc)
                    t_train_gen = np.mean(t_train_gen)
                    t_vis = np.mean(t_vis)
                    t_save = np.mean(t_save)
                    t_total = t_generate_data + t_train_disc + t_train_gen + t_vis + t_save
                    if (iter % N_print) == 0:
                        print("t_generate_data: {:0.4g} s ({:0.4g}%)".format(
                            t_generate_data, t_generate_data / t_total * 100))
                        print("t_train_disc: {:0.4g} s ({:0.4g}%)".format(
                            t_train_disc, t_train_disc / t_total * 100))
                        print("t_train_gen: {:0.4g} s ({:0.4g}%)".format(
                            t_train_gen, t_train_gen / t_total * 100))
                        print("t_vis: {:0.4g} s ({:0.4g}%)".format(
                            t_vis, t_vis / t_total * 100))
                        print("t_save: {:0.4g} s ({:0.4g}%)".format(
                            t_save, t_save / t_total * 100))
                    logger.scalar_summary('Steps per sec', 1.0 / t_total,
                                          n_global_iter)
                    t_generate_data = []
                    t_train_disc = []
                    t_train_gen = []
                    t_vis = []
                    t_save = []

            should_vis = ((n_global_iter + 1) % train_config["vis_freq"]) == 0
            if use_gpu:
                degraded_img = batch['degraded_img'].cuda()
                target_img = batch['original_img'].cuda()
            else:
                degraded_img = batch['degraded_img']
                target_img = batch['original_img']
            t1 = time.time()

            optimizer.zero_grad()
            # Run the input through the model.
            output_img = model(degraded_img)
            loss = l1_loss(output_img, target_img)
            loss.backward()
            optimizer.step()
            logger.scalar_summary('Loss', loss.data[0], n_global_iter)
            psnr = calculate_psnr(output_img, target_img)
            logger.scalar_summary('Train PSNR', psnr, n_global_iter)

            average_loss.update(loss.data[0])
            t2 = time.time()

            if iter % 10 == 0:
                print("epoch{}, iter{}, loss: {}" \
                        .format(epoch, iter, loss.data[0]))
            n_global_iter += 1

            if should_vis:
                exp = batch['vis_exposure'] if 'vis_exposure' in batch else None
                img = create_vis(degraded_img[:, :3, ...], target_img,
                                 output_img, exp)
                logger.image_summary("Train Images", img, n_global_iter)

            t3 = time.time()
            if (n_global_iter % train_config["save_freq"]) == 0:
                if average_loss.get_value() < best_loss:
                    is_best = True
                    best_loss = average_loss.get_value()
                else:
                    is_best = False
                save_dict = {
                    'epoch': epoch,
                    'global_iter': n_global_iter,
                    'state_dict': model.state_dict(),
                    'best_loss': best_loss,
                    'optimizer': optimizer.state_dict(),
                }
                save_checkpoint(save_dict, is_best, checkpoint_dir,
                                n_global_iter)
            t4 = time.time()

        print("Finish epoch {}, time elapsed {}" \
                .format(epoch, time.time() - ts))