Example #1
0
def apply_transform(args, batch_queue, aug_queue):
    np.random.seed(int(time.time()))
    while True:
        augs = batch_queue.get()
        if augs is None:
            break
        x, y = augs
        o_aug, l_aug = transform(x, y, args.fliplr, args.rotate, args.norm,
                                 args.ortho_side, args.ortho_side, 3,
                                 args.label_side, args.label_side)
        aug_queue.put((o_aug, l_aug))
    aug_queue.put(None)
Example #2
0
def apply_transform(args, batch_queue, aug_queue):
    np.random.seed(int(time.time()))
    while True:
        augs = batch_queue.get()
        if augs is None:
            break
        x, y = augs
        o_aug, l_aug = transform(
            x, y, args.fliplr, args.rotate, args.norm, args.ortho_side,
            args.ortho_side, 3, args.label_side, args.label_side)
        aug_queue.put((o_aug, l_aug))
    aug_queue.put(None)
            (args.ortho_original_side, args.ortho_original_side, 3))
        l_patch = np.fromstring(l_val, dtype=np.uint8).reshape(
            (args.label_original_side, args.label_original_side, 1))

        o_batch.append(o_patch)
        l_batch.append(l_patch)

        ortho_cur.next()
        label_cur.next()

    st = time.time()
    o_batch = np.asarray(o_batch, dtype=np.uint8)
    l_batch = np.asarray(l_batch, dtype=np.uint8)

    o_aug, l_aug = transform(
        o_batch, l_batch, args.fliplr, args.rotate, args.norm, args.ortho_side,
        args.ortho_side, 3, args.label_side, args.label_side)

    print(time.time() - st, 'sec', o_aug.shape, l_aug.shape)

    for i, (o, l) in enumerate(zip(o_aug, l_aug)):
        o = o.transpose((1, 2, 0))
        o = o - o.min()
        o = o / o.max()
        o *= 255

        l = l.reshape(-1)
        l = np.hstack([l == 0, l == 1, l == 2])
        l = l.reshape(
            (3, 16, 16)).transpose((1, 2, 0)).astype(np.uint8) * 255
Example #4
0
            (args.ortho_original_side, args.ortho_original_side, 3))
        l_patch = np.fromstring(l_val, dtype=np.uint8).reshape(
            (args.label_original_side, args.label_original_side, 1))

        o_batch.append(o_patch)
        l_batch.append(l_patch)

        ortho_cur.next()
        label_cur.next()

    st = time.time()
    o_batch = np.asarray(o_batch, dtype=np.uint8)
    l_batch = np.asarray(l_batch, dtype=np.uint8)

    o_aug, l_aug = transform(
        o_batch, l_batch, args.fliplr, args.rotate, args.norm, args.ortho_side,
        args.ortho_side, 3, args.label_side, args.label_side)

    print(time.time() - st, 'sec', o_aug.shape, l_aug.shape)

    for i, (o, l) in enumerate(zip(o_aug, l_aug)):
        o = o.transpose((1, 2, 0))
        o = o - o.min()

        #nan_check = np.isfinite(o).all()
        #if not nan_check: print('NaN value encountered.') # Culprit matrix is '+str(o)+' .')
        
        #all_zeros = not o.any()
        #if all_zeros: print('An all zero matrix was encountered.') # Culprit matrix is '+str(o)+' .')
        
        o = o / o.max()