Example #1
0
    def forward(self, data, criterion, config, usegpu, acc_result=None):
        user = data['users']
        item = data['music']
        label = data['label']
        if not self.model == 'MLP':
            embed_user_GMF = self.embed_user_GMF(user)
            embed_item_GMF = self.embed_item_GMF(item)
            output_GMF = embed_user_GMF * embed_item_GMF
        if not self.model == 'GMF':
            embed_user_MLP = self.embed_user_MLP(user)
            embed_item_MLP = self.embed_item_MLP(item)
            interaction = torch.cat((embed_user_MLP, embed_item_MLP), -1)
            output_MLP = self.MLP_layers(interaction)

        if self.model == 'GMF':
            concat = output_GMF
        elif self.model == 'MLP':
            concat = output_MLP
        else:
            concat = torch.cat((output_GMF, output_MLP), -1)
        self.output = self.predict_layer(concat)

        loss = criterion(self.output, label)
        accu, accu_result = calc_accuracy(self.output, label, config,
                                          acc_result)
        return {
            "loss": loss,
            "accuracy": accu,
            "result": torch.max(self.output, dim=1)[1].cpu().numpy(),
            "x": self.output,
            "accuracy_result": acc_result
        }
Example #2
0
    def forward(self, data, criterion, config, usegpu, acc_result=None):
        x = data['input']
        labels = data['label']

        x = x.view(x.shape[0], 1, -1, self.data_size)

        conv_out = []
        gram = self.min_gram
        for conv in self.convs:
            y = self.relu(conv(x))
            y = torch.max(y, dim=2)[0].view(x.shape[0], -1)

            conv_out.append(y)
            gram += 1

        conv_out = torch.cat(conv_out, dim=1)

        y = self.fc(conv_out)
        if self.multi:
            y = self.sigmoid(y)

        loss = criterion(y, labels, weights=None)
        accu, acc_result = calc_accuracy(y, labels, config, None)
        return {
            "loss": loss,
            "accuracy": accu,
            "result": torch.ge(y, 0.5).cpu().numpy(),
            "x": y,
            "accuracy_result": acc_result
        }
Example #3
0
    def forward(self, data, criterion, config, usegpu, acc_result=None):
        x = data['input']
        labels = data['label']

        x = x.view(x.shape[0], 1, -1, self.data_size)

        conv_out = []
        gram = self.min_gram
        for conv in self.convs:
            y = self.relu(conv(x))

            conv_out.append(y)
            gram += 1

        conv_out = torch.cat(conv_out, dim=1).squeeze(3).permute(0, 2, 1)

        #attention
        attn = nn.Softmax(dim = 1)(self.fc1(conv_out)).permute(0, 2, 1)
        attn_out = self.fc2(torch.bmm(attn, conv_out)).squeeze(2)

        y = self.sigmoid(attn_out)

        loss = criterion(y, labels, weights = None)
        accu, acc_result = calc_accuracy(y, labels, config, None)
        return {"loss": loss, "accuracy": accu, "result": torch.ge(y, 0.5).cpu().numpy(), "x": y,
                "accuracy_result": acc_result}
Example #4
0
    def forward(self, data, criterion, config, usegpu, acc_result=None):
        # print(data.keys())
        description = data['description']
        skills = data['skills']
        label = data['label']
        work = data['work_history']

        desc = self.embs(description)
        # print(desc)
        # skills = self.skill_encoder(skills)
        work = work.view(work.shape[0] * self.work_num, work.shape[2])
        work = self.embs(work)

        work, _ = self.work_encoder(work)
        work, _ = torch.max(work, dim=1)  # batch_size * work_num, hidden_size
        work = work.view(desc.shape[0], self.work_num,
                         config.getint('model', 'hidden_size'))

        desc, _ = self.desc_encoder(desc)
        skills = self.skill_encoder(skills, desc, work)

        desc = torch.max(desc, dim=1)[0]
        #print('desc', desc.shape)
        feature = torch.cat([desc, skills], dim=1)
        y = self.fc(feature)

        loss = criterion(y, label)
        accu, acc_result = calc_accuracy(y, label, config, acc_result)
        return {
            "loss": loss,
            "accuracy": accu,
            "result": torch.max(y, dim=1)[1].cpu().numpy(),
            "x": y,
            "accuracy_result": acc_result
        }
Example #5
0
    def forward(self, data, criterion, config, usegpu, mode="train"):
        x = data['input']
        labels = data['label']
        y, _ = self.bert(x, output_all_encoded_layers=False)
        y = y.view(y.size()[0], -1)
        y = self.fc(y)
        if self.multi:
            y = self.sigmoid(y)

        loss = criterion(y, labels, weights = None)
        accu, acc_result = calc_accuracy(y, labels, config)

        return {"loss": loss, "accuracy": accu, "result": torch.max(y, dim=1)[1].cpu().numpy(), "x": y,
                "accuracy_result": acc_result}
Example #6
0
    def forward(self, data, criterion, config, usegpu, acc_result = None):
        user = data['users']
        music = data['music']
        label = data['label']
        self.emb = self.field_encoder(user,music) # None*(F*K)
        self.emb = self.emb.reshape((-1,self.field_num,self.field_size)) # None *F *K
        # # -----------linear part ------------------------
        self.y_first_order= torch.sum(self.emb,dim=2)
        self.y_first_order= self.dropout(self.y_first_order)
        # # -----------CIN part----------------------------
        y_cin=self.CIN(self.emb)
        # # -----------DNN part----------------------------
        self.y_deep=self.emb.reshape((-1,self.field_num*self.field_size))
        self.y_deep=self.dropout(self.y_deep)
        self.y_deep=self.mlp(self.y_deep)
#         print("self.y_first_order,self.y_cin,self.y_deep:{},{},{}".format(self.y_first_order.shape,self.y_cin.shape,self.y_deep.shape))
        self.output=torch.cat([self.y_first_order,y_cin,self.y_deep],dim=1)
        self.output=self.final(self.output)
        loss = criterion(self.output, label)
        accu, accu_result = calc_accuracy(self.output, label, config, acc_result)
        return {"loss": loss, "accuracy": accu, "result": torch.max(self.output, dim=1)[1].cpu().numpy(), "x": self.output,
                        "accuracy_result": acc_result}
Example #7
0
    def forward(self, data, criterion, config, usegpu, acc_result = None):
        users = data['users']
        candidate = data['candidate']
        history = data['history']
        labels = data['label']
        score = data['score']
        

        candidate, cweight = self.encoder(candidate, users)
        
        batch = labels.shape[0]
        k = history['id'].shape[1]
        for key in history:
            history[key] = history[key].view(batch * k, -1)
        history, hweight = self.encoder(history, users, True)
        history = history.view(batch, k, -1)
        

        interest, similarity = self.relation(history, candidate, score)
        
        # similarity = torch.mean(similarity, dim = 1).unsqueeze(1)
        similarity = torch.max(similarity, dim = 1)[0].unsqueeze(1)
        y1 = torch.cat([1 - similarity, similarity], dim = 1)
        
        y2 = self.out(torch.cat([interest, candidate], dim = 1))
        
        # y2 = self.out(candidate)
        
        loss = criterion(y2, labels) + criterion(y1, labels)#+ self.relu(torch.mean(hweight) - 0.7) # - torch.mean(torch.log(torch.max(hweight.squeeze(), dim = 1)[0]))
        # loss = criterion(y, labels) - torch.mean(torch.log(torch.max(hweight.squeeze(), dim = 1)[0]))
        
        
        y = torch.softmax(y1, dim = 1) + torch.softmax(y2, dim = 1)
        y = y * 0.5
        
        accu, acc_result = calc_accuracy(y, labels, config, acc_result)

        return {"loss": loss, "accuracy": accu, "result": torch.max(y, dim=1)[1].cpu().numpy(), "x": y,
                                "accuracy_result": acc_result}
Example #8
0
    def forward(self, data, criterion, config, usegpu, acc_result=None):
        user = data['users']
        music = data['music']

        label = data['label']

        user = self.user_encoder(user)
        music = self.music_encoder(music)

        s = user * music

        out_result = self.out(s)

        s = s.matmul(torch.transpose(self.memory, 0, 1))
        s = torch.softmax(s, dim=1)
        rel = s.matmul(self.memory)

        score = user + rel - music

        #print(score.shape)

        score = torch.norm(score, dim=1)
        mask = (2 * label - 1).float()

        #print(mask.shape)
        #print(score.shape)

        loss = torch.mean(mask * score)  # + criterion(out_result, label)

        accu, accu_result = calc_accuracy(out_result, label, config,
                                          acc_result)
        return {
            "loss": loss,
            "accuracy": accu,
            "result": torch.max(out_result, dim=1)[1].cpu().numpy(),
            "x": out_result,
            "accuracy_result": acc_result
        }
Example #9
0
    def forward(self, data, criterion, config, usegpu, acc_result=None):
        x = data["input"]
        labels = data["label"]

        x = x.view(config.getint("train", "batch_size"), -1, self.data_size)
        self.init_hidden(config, usegpu)
        self.hidden = self.transpose(self.hidden)

        lstm_out, self.hidden = self.lstm(x, self.hidden)

        lstm_out = torch.max(lstm_out, dim=1)[0]

        y = self.fc(lstm_out)

        loss = criterion(y, labels)
        accu, acc_result = calc_accuracy(y, labels, config, acc_result)

        return {
            "loss": loss,
            "accuracy": accu,
            "result": torch.max(y, dim=1)[1].cpu().numpy(),
            "x": y,
            "accuracy_result": acc_result
        }
Example #10
0
 def forward(self, data, criterion, config, usegpu, acc_result=None):
     user = data['users']
     music = data['music']
     label = data['label']
     self.emb = self.field_encoder(user, music)  # None*(F*K)
     self.emb = self.emb.reshape(
         (-1, self.field_num, self.field_size))  # None *F *K
     # # -----------FM part------------------------------
     # ------------first order term---------
     self.y_first_order = torch.sum(self.emb, dim=2)
     self.y_first_order = self.dropout(self.y_first_order)
     # ---------- second order term ---------------
     summed = torch.sum(self.emb, dim=1)
     self.summed_square = torch.mul(summed, summed)  #None *K
     self.squared_sum = torch.sum(torch.mul(self.emb, self.emb),
                                  dim=1)  #None *K
     self.y_second_order = 0.5 * (self.summed_square - self.squared_sum
                                  )  # None*K
     self.y_second_order = self.dropout(self.y_second_order)
     # # -----------DNN part----------------------------
     self.y_deep = self.emb.reshape((-1, self.field_num * self.field_size))
     self.y_deep = self.dropout(self.y_deep)
     self.y_deep = self.mlp(self.y_deep)
     self.output = torch.cat(
         [self.y_first_order, self.y_second_order, self.y_deep], dim=1)
     self.output = self.final(self.output)
     loss = criterion(self.output, label)
     accu, accu_result = calc_accuracy(self.output, label, config,
                                       acc_result)
     return {
         "loss": loss,
         "accuracy": accu,
         "result": torch.max(self.output, dim=1)[1].cpu().numpy(),
         "x": self.output,
         "accuracy_result": acc_result
     }