parser.add_argument("--title", type=str, help="experiment title", required=True) args = parser.parse_args() CONFIG = get_config(args.cfg) if CONFIG.cuda: device = torch.device("cuda" if ( torch.cuda.is_available() and CONFIG.ngpu > 0) else "cpu") else: device = torch.device("cpu") get_logger(CONFIG.log_dir) writer = get_writer(args.title, CONFIG.write_dir) logging.info( "=================================== Experiment title : {} Start ===========================" .format(args.title)) set_random_seed(CONFIG.seed) train_transform, val_transform, test_transform = get_transforms(CONFIG) train_dataset, val_dataset, test_dataset = get_dataset( train_transform, val_transform, test_transform, CONFIG) train_loader, val_loader, test_loader = get_dataloader( train_dataset, val_dataset, test_dataset, CONFIG) generator = get_generator(CONFIG, 21 * 8)
parser.add_argument("--evaluate-arch-param", action="store_true", default=False, help="whether to evaluate arch_param") parser.add_argument("--evaluate-lookup_table", action="store_true", default=False, help="whether to evaluate lookup_table") parser.add_argument("--loading-architectures", action="store_true", default=False, help="whether to load the architecture") parser.add_argument("--generate-architecture-parameter", action="store_true", default=False, help="generate architecture") parser.add_argument("--target-macs", type=int, help="target macs") args = parser.parse_args() CONFIG = get_config(args.cfg) if CONFIG.cuda: device = torch.device("cuda" if (torch.cuda.is_available() and CONFIG.ngpu > 0) else "cpu") else: device = torch.device("cpu") get_logger(CONFIG.log_dir) writer = get_writer(CONFIG.write_dir) #set_random_seed(CONFIG.seed) train_transform, val_transform, test_transform = get_transforms(CONFIG) train_dataset, val_dataset, test_dataset = get_dataset(train_transform, val_transform, test_transform, CONFIG) train_loader, val_loader, test_loader = get_dataloader(train_dataset, val_dataset, test_dataset, CONFIG) model = Supernet(CONFIG) lookup_table = LookUpTable(CONFIG) arch_param_nums = model.get_arch_param_nums() #generator = ConvGenerator(CONFIG.hc_dim, 1, CONFIG.hidden_dim) generator = get_generator(CONFIG, arch_param_nums) criterion = cross_encropy_with_label_smoothing