Example #1
0
def main(arguments):
    """
    Method to start the workflow of image processing

    :param arguments: the arguments passed by the user. Determines which procedure will be performed
    """
    if arguments.procedure is not None:
        if arguments.procedure == 'tiling_raster':
            if (arguments.image is not None) and (arguments.output is not None) \
                    and (arguments.width is not None) and (arguments.height is not None):
                tiling.Tiling().tiling_raster(arguments.image,
                                              arguments.output,
                                              arguments.width,
                                              arguments.height, True)
            else:
                logging.error(
                    ">> One of arguments (image_folder, output_folder, weight, height) are incorrect or "
                    "empty. Try it again!")
                raise RuntimeError
        elif arguments.procedure == 'tiling_vector':
            if (arguments.image_tiles is not None) and (arguments.shapefile_reference is not None) and \
                    (arguments.output is not None):
                tiling.Tiling().tiling_vector(arguments.image_tiles,
                                              arguments.shapefile_reference,
                                              arguments.output)
            else:
                logging.error(
                    ">> One of arguments (image_tiles, shapefile_reference, output_folder) are incorrect or "
                    "empty. Try it again!")
                raise RuntimeError
        elif arguments.procedure == 'shp2png':
            if (arguments.image is not None) and (arguments.shapefile_folder is not None) and \
                    (arguments.output is not None) and (arguments.width is not None) and (arguments.height is not None):
                tiling.Tiling().shp2png(arguments.image,
                                        arguments.shapefile_folder,
                                        arguments.output,
                                        arguments.width,
                                        arguments.height,
                                        settings.CLASSES,
                                        label_type='rgb')
            else:
                logging.error(
                    ">> One of arguments (image_folder, shapefile_reference, output_folder) are incorrect or "
                    "empty. Try it again!")
                raise RuntimeError

        elif arguments.procedure == 'split_samples':
            if (arguments.training_folder is not None) and (arguments.validation_folder is not None) and \
                    (arguments.percentage is not None):
                utils.Utils().split_samples(arguments.training_folder,
                                            arguments.validation_folder,
                                            arguments.percentage)
            else:
                logging.error(
                    ">> One of arguments (training_folder, validation_folder, percentage) are incorrect or "
                    "empty. Try it again!")
                raise RuntimeError
        else:
            logging.error(">> Procedure option not found. Try it again!")
            raise RuntimeError
Example #2
0
def check_requirements():
    checker = u.Utils()
    try:
        checker.which('bwa')
        checker.which('bedtools')
        checker.which('samtools')
        checker.which('R')
        #check sort version
        #check samtools version
    except Exception as e:
        raise (e)
Example #3
0
import discord
from discord.ext import commands
import asyncio
from utils import utils
from utils.storage import Storage

Utils = utils.Utils()

class LFC(commands.Cog, name='Looking for Crew'):
    def __init__(self, client):
        self.client = client

        self.Storage = Storage()


    async def auto_remove(self, user: discord.User):
        await asyncio.sleep(7200)
        for guild in self.Storage.get_lfc_enabled_guilds(self.client):
            if user in guild.members:
                role = self.Storage.get_lfc_role(guild)
                try:
                    await guild.get_member(user.id).remove_roles(role)
                except discord.Forbidden:
                    continue
    
    @Utils.matchLFCChannel()
    @commands.command(
        brief='Sets the user into `Looking for Crew` status for 2 hours.',
        description='This command gives the user the set `Looking for Crew` role. \n\
            You can only use this command in the set channels.\n\
            Type ?nlfc once you\'re in a crew to avoid getting further notifications.\n\
Example #4
0
# API server for controlling settings
from flask import Flask, render_template, request
from flask_socketio import SocketIO, emit
from utils import utils
import json, os

cwd = os.getcwd()
utilities = utils.Utils()
app = Flask(__name__)
socketio = SocketIO(app)


# GET route for main HTML page so user can edit his settings
@app.route("/")
def index():
    with open(f"{cwd}/config.json", "r") as f:
        config = json.load(f)
    return render_template('index.html', config=config)


# POST route for updating data
@app.route("/config", methods=['POST'])
def config():
    try:
        ip = request.form.get("ip")
        light = request.form.get("light")
        # Get current config
        with open(f"{cwd}/config.json", "r") as f:
            config = json.load(f)
            config["ip"] = ip
            config["light"] = light
Example #5
0
def check_arguments(args):
    checker = u.Utils()
    inputs = {}
    try:
        # Check if the input files exist and are well formatted
        os.path.isfile(args['f'])
        inputs['inputs'], inputs['controls'], inputs['prefix_inputs'], inputs[
            'prefix_controls'] = input_integrity(args['f'])

        # Check if the output folder exist
        if os.path.isdir(args['o']):
            raise Exception(
                "mkdir: cannot create directory '%s': File exists." %
                (args['o']))
        else:
            os.makedirs(args['o'])
            inputs['outdir'] = args['o']

        # Check if Bowtie index exists
        if args['b'].endswith('.bwt'):
            prefix_index = os.path.splitext(args['b'])[0]
        else:
            prefix_index = args['b']

        for suffix in ['.bwt', '.amb', '.ann', '.pac', '.sa']:
            if not os.path.isfile("%s%s" % (prefix_index, suffix)):
                raise Exception("The BWA index file '%s%s' does not exist." %
                                (prefix_index, suffix))
        inputs['index'] = prefix_index

        # Check if genome file exists
        if not os.path.isfile(args['g']):
            raise Exception("The genome chromInfo file '%s' does not exist." %
                            (args['g']))
        inputs['genome'] = args['g']

        if args['sponges'] != None:
            if not os.path.isfile(args['sponges']):
                raise Exception("The sponges file '%s' does not exist." %
                                (args['sponges']))
            inputs['sponges'] = args['sponges']
        else:
            inputs['sponges'] = None

        if args['macs2'] != None:
            if os.path.exists(args['macs2']):
                inputs['macs2'] = args['macs2']
            else:
                raise Exception("Macs2 not found in '%s'" % (args['macs2']))
        else:
            try:
                checker.which('macs2')
                inputs['macs2'] = "macs2"
            except Exception as e:
                raise (e)


#        if not os.path.exists(args['picard']):
#            raise Exception("Picard not found in '%s'" %(args['picard']))
#        else:
#            inputs['picard'] = args['picard']
        inputs['fraglen'] = -1
        if args['fraglen'] != None:
            if args['spp']:
                raise Exception(
                    "'--spp' and '--fraglen' are mutually exclusive. Please select only one."
                )
            else:
                inputs['fraglen'] = args['fraglen']
        else:
            if args['spp']:
                try:
                    j = jr.JobRunner()
                    j.append([['Rscript ./common/test.R']])
                    j.run()
                    inputs['spp'] = True
                except:
                    raise Exception(
                        "Spp is not currently installed or cannot be loaded.")
            else:
                inputs['spp'] = False
                inputs['fraglen'] = -1
                print('Picard tools will be used to estimate insert size.')

        inputs['threads'] = args['t']
        inputs['cpus'] = args['c']
        inputs['common'] = os.path.join(
            os.path.dirname(os.path.abspath(__file__)), "common")
        inputs['picard'] = os.path.join(
            os.path.dirname(os.path.abspath(__file__)),
            "common/picard-tools-1.141/picard.jar")

        # If not enough controls are supplied, use pooled controls.
        if len(inputs['inputs']) != len(inputs['controls']):
            inputs['pooled'] = True
        else:
            inputs['pooled'] = False

        print("Argument Verification completed")
    except Exception as e:
        raise (e)

    return inputs
Example #6
0
 def __init__(self):
     self.driver = utils.Utils()
     self.urlUtils = urlutils.UrlUtils()
     self.json = jsondatas.JsonData()
Example #7
0
    def predict_deep_network(self, model, load_param):
        """
        Initiate the process of inferences. The weight matrix from trained deep learning, which represents the
        knowledge, is loaded and the images are then presented. Each one is processed (multiclass or not) and
        submitted to the polygonization, where the raster is interpreted and a correspondent geographic
        format is created

        :param model: the compiled keras deep learning architecture
        :param load_param: a dict with the keras deep learning architecture parameters
        """
        logging.info(">> Performing prediction...")

        path_val_images = os.path.join(load_param['image_prediction_folder'])
        pred_images = loader.Loader(path_val_images)

        for item in pred_images.get_list_images():
            filename = os.path.basename(item)
            name = os.path.splitext(filename)[0]
            complete_path = os.path.join(path_val_images, item)
            dims, is_geographic_file = self.check_image_format(complete_path)

            if dims is None or is_geographic_file is None:
                logging.warning(
                    ">>>>>> The filename {} does not match any accepted extension. "
                    "Check it and try again!".format(filename))
                return

            if dims[0] > load_param['width_slice'] or dims[1] > load_param[
                    'height_slice']:
                logging.info(
                    ">>>> Image {} is bigger than the required dimension! "
                    "Cropping and predicting...".format(filename))

                if is_geographic_file is True:
                    list_images = slicer.Slicer().slice_geographic(
                        complete_path, load_param['width_slice'],
                        load_param['height_slice'], load_param['tmp_slices'])
                else:
                    list_images = slicer.Slicer().slice_bitmap(
                        complete_path, load_param['width_slice'],
                        load_param['height_slice'], load_param['tmp_slices'])

                logging.info(
                    ">>>> Predicting each of {} slices and predicting...".
                    format(len(list_images)))
                prediction_path_list = []
                for path in list_images:
                    images_array = load_img(
                        path,
                        target_size=(load_param['input_size_w'],
                                     load_param['input_size_h']))
                    images_array = image.img_to_array(images_array)
                    images_array = np.expand_dims(images_array, axis=0)
                    images_array = cv2.normalize(images_array, None, 0, 255,
                                                 cv2.NORM_MINMAX, cv2.CV_32F)

                    prediction = model.get_model().predict(images_array)
                    prediction_path_list.append(
                        self.segment_image(path, prediction, load_param))

                logging.info(
                    ">>>> Merging the {} predictions in image with {} x {}...".
                    format(len(prediction_path_list), dims[0], dims[1]))
                complete_path_to_merged_prediction = os.path.join(
                    load_param['output_prediction'], name + ".png")
                slicer.Slicer().merge_images(
                    prediction_path_list, dims[0], dims[1],
                    complete_path_to_merged_prediction)

                if is_geographic_file is True:
                    logging.info(">>>> Polygonizing segmented image...")
                    self.poligonize(complete_path_to_merged_prediction,
                                    load_param['classes'], complete_path,
                                    load_param['output_prediction_shp'])
            else:
                image_to_predict = load_img(
                    complete_path,
                    target_size=(load_param['input_size_w'],
                                 load_param['input_size_h']))
                images_array = image.img_to_array(image_to_predict)
                images_array = cv2.normalize(images_array, None, 0, 255,
                                             cv2.NORM_MINMAX, cv2.CV_32F)
                images_array = np.expand_dims(images_array, axis=0)

                prediction = model.get_model().predict(images_array)

                prediction_path = self.segment_image(complete_path, prediction,
                                                     load_param)

                complete_path_to_prediction = os.path.join(
                    load_param['output_prediction'], name + ".png")
                os.replace(prediction_path, complete_path_to_prediction)

                if is_geographic_file is True:
                    logging.info(">>>> Polygonizing segmented image...")
                    self.poligonize(complete_path_to_prediction,
                                    load_param['classes'], complete_path,
                                    load_param['output_prediction_shp'])

            utils.Utils().flush_files(load_param['tmp_slices'])
            utils.Utils().flush_files(load_param['tmp_slices_predictions'])