def main(args):
  """
  Main function - launches the program.
  :param args:
    The Parser arguments
  :type args:
    Parser object
  :returns:
    List  
  :example:
    ["Downloading files from the Compranet site."]
  """
  
  if args:

    if args.sample:
      source_folder = settings.folder_sample_data
    
    else:
      # Use cached versions of the source data in csv format
      source_folder = settings.folder_full_cache      
      check_create_folder(source_folder)
      
      if args.download:
        clean_folder(source_folder)
        download_compranet(settings.years)
        
    # Check if there are CSV files in the sample folder
    pattern = os.path.join(source_folder, '*.csv')
    source_data = list_files(pattern)

    if source_data:

      print "About to clean the data"
      clean_df = clean.clean_csv(source_data)
      
      print "About to store it in OCDS format"
      ocds.generate_json(clean_df)

    else:
      return["No source data found. Make sure there is at least one CSV file in " + source_folder, 1]

    return["Prepared and cleaned the files from the Compranet site.",0]
Example #2
0
     'gpu2': gpu2,
     'min_reward': -env_params['stacksize'],
     'max_reward': env_params['pot'] + env_params['stacksize']
 }
 validation_params = {
     'actor_path': config.agent_params['actor_path'],
     'epochs': args.valepochs,
     'koth': args.koth
 }
 path = training_params['save_dir']
 directory = os.path.dirname(path)
 if not os.path.exists(directory):
     os.mkdir(directory)
 # Clean training_run folder
 if not args.resume:
     clean_folder(training_params['critic_path'])
     clean_folder(training_params['actor_path'])
 # Set processes
 mp.set_start_method('spawn')
 num_processes = min(mp.cpu_count(), 3)
 print(f'Number of used processes {num_processes}')
 print(f'Training {args.network_type} model')
 if args.network_type == 'combined':
     alphaPoker = CombinedNet(seed, nS, nA, nB, network_params).to(device)
     if args.frozen:
         # Load pretrained hand recognizer
         copy_weights(alphaPoker,
                      network_params['actor_hand_recognizer_path'])
     alphaPoker.summary
     alphaPoker_optimizer = optim.Adam(alphaPoker.parameters(),
                                       lr=config.agent_params['critic_lr'])
def generate_json(df):
  """
  Generate OCDS record packages for each month

  :param df:
    Dataframe with all the contracts
  :type args:
    DataFrame

  :returns:
      
  :example:

  """

  check_create_folder(settings.folder_ocds_json)
  check_create_folder(settings.folder_tmp)
  clean_folder(settings.folder_tmp)

  # Group the Compranet by date
  df['group_date'] = df[settings.grouping_date].convert_objects(convert_dates='coerce')
  grouped_df = df.set_index('group_date').groupby(pd.TimeGrouper(freq='M'))

  # Store the records for each month in a temporary CSV file
  # The JSON files will be generated from these CSV files, which
  # is much more performant than iterating over the rows in pandas
  files = []
  for month, records in grouped_df:
    if not records.empty:
      m = month.strftime("%Y%m%d")
      file_name = os.path.join(settings.folder_tmp, m + '.csv')
      files.append(file_name)
      records.to_csv(file_name, index=False)

  # Loop over each CSV file and create an OCDS record package
  for f in files:

    # Store the package meta-data
    ## ADD MONTH
    package = {
      "uri": os.path.join("http://example.com/" + get_filename(f) + '.json'),
      "publishedDate": get_filename(f),
      "records": [],
      "publisher": {
        "identifier": "100",
        "name": "Compranet"
      },
      "packages": []
    }

    # Read the file and generate the records
    with open(f, 'rb') as infile:
      data = csv.DictReader(infile)

      ocds_records = {}

      for record in data:
        record_id = record['NUMERO_PROCEDIMIENTO']

        # Add the generic tender data for this record,
        # if it's not there already
        if not record_id in ocds_records:
          ocds_records[record_id] = get_tender_data(record)

        # The contract and award data needs to be added for each row

        # OCDS expects a unique ID for every award. NUMERO_EXPEDIENTE is not unique, hence
        # a custom ID
        award_id = str(record['NUMERO_EXPEDIENTE']) + '-' + str(len(ocds_records[record_id]['awards']) + 1)
        
        ocds_records[record_id]['awards'].append(get_award_data(record, award_id))
        ocds_records[record_id]['contracts'].append(get_contract_data(record, award_id))

      for key, value in ocds_records.iteritems():
        package['records'].append(value)

    ofn = os.path.join(settings.folder_ocds_json, get_filename(f) + '.json')
    with open(ofn, 'w') as outfile:
      json.dump(package, outfile)