data_path = '../dataset/' base_dir = '../dataset/WIDER_train/' filename = '../dataset/wider_face_train.txt' min_face_size = 20 scale_factor = 0.79 p_thresh = 0.6 r_thresh = 0.7 # 获取人脸的box图片数据 print('开始生成bbox图像数据') crop_48_box_image(data_path, filename, min_face_size, scale_factor, p_thresh, r_thresh) # 获取人脸关键点的数据 print('开始生成landmark图像数据') # 获取lfw negbox,关键点 lfw_neg_path = os.path.join(data_path, 'trainImageList.txt') data_list = get_landmark_from_lfw_neg(lfw_neg_path, data_path) # 获取celeba,关键点 # celeba_data_list = get_landmark_from_celeba(data_path) # data_list.extend(celeba_data_list) crop_landmark_image(data_path, data_list, 48, argument=True) # 合并数据列表 print('开始合成数据列表') combine_data_list(os.path.join(data_path, '48')) # 合并图像数据 print('开始合成图像文件') convert_data(os.path.join(data_path, '48'), os.path.join(data_path, '48', 'all_data')) # 删除旧数据 print('开始删除就得图像文件') delete_old_img(data_path, 48)
if __name__ == '__main__': data_path = '../dataset/' base_dir = '../dataset/WIDER_train/' filename = '../dataset/wider_face_train.txt' min_face_size = 20 scale_factor = 0.79 thresh = 0.6 # 获取人脸的box图片数据 print('开始生成bbox图像数据') crop_24_box_image(data_path, filename, min_face_size, scale_factor, thresh) # 获取人脸关键点的数据 print('开始生成landmark图像数据') # 获取lfw negbox,关键点 lfw_neg_path = os.path.join(data_path, 'trainImageList.txt') data_list = get_landmark_from_lfw_neg(lfw_neg_path, data_path) # 获取celeba,关键点 # celeba_data_list = get_landmark_from_celeba(data_path) # data_list.extend(celeba_data_list) crop_landmark_image(data_path, data_list, 24, argument=True) # 合并数据列表 print('开始合成数据列表') combine_data_list(os.path.join(data_path, '24')) # 合并图像数据 print('开始合成图像文件') convert_data(os.path.join(data_path, '24'), os.path.join(data_path, '24', 'all_data')) # 删除旧数据 print('开始删除就得图像文件') delete_old_img(data_path, 24)
print('%s 个图片已处理,pos:%s part: %s neg:%s' % (idx, p_idx, d_idx, n_idx)) f1.close() f2.close() f3.close() if __name__ == '__main__': data_path = '../dataset/' # 获取人脸的box图片数据 print('开始生成bbox图像数据') crop_12_box_image(data_path) # 获取人脸关键点的数据 print('开始生成landmark图像数据') # 获取lfw negbox,关键点 lfw_neg_path = os.path.join(data_path, 'trainImageList.txt') data_list = get_landmark_from_lfw_neg(lfw_neg_path, data_path) # 获取celeba,关键点 # celeba_data_list = get_landmark_from_celeba(data_path) # data_list.extend(celeba_data_list) crop_landmark_image(data_path, data_list, 12, argument=True) # 合并数据列表 print('开始合成数据列表') combine_data_list(os.path.join(data_path, '12')) # 合并图像数据 print('开始合成图像文件') convert_data(os.path.join(data_path, '12'), os.path.join(data_path, '12', 'all_data')) # 删除旧数据 print('开始删除旧的图像文件') delete_old_img(data_path, 12)