def read_arguments(train=True): parser = argparse.ArgumentParser() parser = add_all_arguments(parser, train) parser.add_argument('--phase', type=str, default='train') opt = parser.parse_args() if train: set_dataset_default_lm(opt, parser) if opt.continue_train: update_options_from_file(opt, parser) opt = parser.parse_args() opt.phase = 'train' if train else 'test' if train: opt.loaded_latest_iter = 0 if not opt.continue_train else load_iter(opt) utils.fix_seed(opt.seed) print_options(opt, parser) if train: save_options(opt, parser) return opt
def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--submit', type=str, default="False") args = parser.parse_args() args.submit = (args.submit == 'True') return args args = parse_args() if __name__ == "__main__": # hyper params seed = 1 fix_seed(seed) n_folds = 5 epochs = 200 batch_size = 512 # data train_df, test_df, sample_submit_df = load_dataset() X, X_test = glove(train_df, test_df) X = X.values.astype('float32') X_test = X_test.values.astype('float32') y = pd.get_dummies(train_df['jobflag']).values.astype('float32') trainset = JobInfoDataset(X, y, jobflag=train_df['jobflag'].values) testset = JobInfoDataset(X_test)
from utils.utils import fix_seed from utils.observer import get_current_time def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--submit', type=str, default="False") args = parser.parse_args() args.submit = (args.submit == 'True') return args args = parse_args() if __name__ == "__main__": # hyper params seed=1; fix_seed(seed) n_folds = 5 epochs = 600 batch_size = 512 # data train_df, test_df, sample_submit_df = load_dataset() X, X_test = word2vec(train_df, test_df) X = X.values.astype('float32') X_test = X_test.values.astype('float32') y = pd.get_dummies(train_df['jobflag']).values.astype('float32') trainset = JobInfoDataset(X, y, jobflag=train_df['jobflag'].values) testset = JobInfoDataset(X_test)