import sys sys.path.append("../") from utils.utils import get_early_diff_path, read_data, pd import matplotlib.pyplot as plt from scipy.stats.mstats import zscore sensors = ['tangential_strain'] for sensor in sensors: print sensor test_reader = pd.read_csv(get_early_diff_path("test_60_explosion")) test_data, test_labels = read_data(test_reader, sensor, pre=True) label = [ 0, 1, 1, 2, 1, 0, 0, 0, 2, 1, 1, 2, 0, 4, 0, 2, 2, 1, 1, 1, 3, 2, 0, 3, 2, 0, 4, 1 ] high_possible_index = [ 623, 637, 1335, 3892, 4475, 6916, 9754, 13150, 13548, 13801, 18367, 19010, 20799, 22174, 22564, 22927, 24272, 28318, 28360, 30189, 32744, 32861, 33364, 34895, 39462, 41735, 44862, 47834 ] deflation = [ 0.0, -29.03, -32.7, -34.23, -21.6, 0.0, 0.0, 0.0, -12.19, -24.12, -36.21, -18.16, 0.0, -24.12, 0.0, -33.67, -15.56, -27.93, -32.96, -14.45, -28.35, -60.14, 0.0, -50.28, -29.79, 0.0, -50.28, -29.22 ] new_label = []
# Optimizer # optimizer = tf.train.AdamOptimizer().minimize(loss) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss) # Prediction prediction = tf.nn.sigmoid(logits) """ Data loading """ training_set = "training_60_explosion" validation_set = "valid_60_explosion" sensor = "radial_strain" print("Data loading") print(sensor) training_reader = pd.read_csv(utils.get_early_diff_path(training_set)) # print len(training_reader) # training_reader = training_reader[training_reader.current_labels == 0] # print len(training_reader) train_data, train_labels = utils.read_data(training_reader, sensor, num_steps=config.num_steps, dim=config.input_size, pre=True) validation_reader = pd.read_csv(utils.get_early_diff_path(validation_set)) # print len(validation_reader) # validation_reader = validation_reader[validation_reader.current_labels == 0] # print len(validation_reader) validation_data, validation_labels = utils.read_data( validation_reader,