# Save models self.autoencoder.save(self.autoencoder_model_pkl) self.encoder.save(self.encoder_model_pkl) self.decoder.save(self.decoder_model_pkl) else: # Save models self.autoencoder = load_model(self.autoencoder_model_pkl) self.encoder = load_model(self.encoder_model_pkl) self.decoder = load_model(self.decoder_model_pkl) def predict(self, test_profile_images): png_profile_images = self.process_images(test_profile_images) encoded_imgs = self.encoder.predict(png_profile_images) decoded_imgs = self.decoder.predict(encoded_imgs) return test_profile_images, decoded_imgs if __name__ == "__main__": profile_gray_objs, midcurve_gray_objs = get_training_data() test_gray_images = random.sample(profile_gray_objs, 5) profile_gray_objs = np.asarray(profile_gray_objs) / 255. midcurve_gray_objs = np.asarray(midcurve_gray_objs) / 255. test_gray_images = np.asarray(test_gray_images) / 255. endec = dense_encoderdecoder() endec.train(profile_gray_objs, midcurve_gray_objs) original_profile_imgs, predicted_midcurve_imgs = endec.predict( test_gray_images) plot_results(original_profile_imgs, predicted_midcurve_imgs)
import sys #sys.path.append('...') from utils.utils import get_training_data from utils.utils import plot_results from core.cnnencoderdecoder.build_cnn_encoderdecoder_model import cnn_encoderdecoder import numpy as np import random if __name__ == "__main__": profile_pngs_objs, midcurve_pngs_objs = get_training_data(size=(128, 128)) test_gray_images = random.sample(profile_pngs_objs, 5) test_gray_images = np.expand_dims(np.asarray(test_gray_images), axis=-1) / 255. profile_pngs_objs = np.asarray(profile_pngs_objs) midcurve_pngs_objs = np.asarray(midcurve_pngs_objs) profile_pngs_objs = np.expand_dims(profile_pngs_objs, axis=-1) midcurve_pngs_objs = np.expand_dims(midcurve_pngs_objs, axis=-1) profile_pngs_objs = profile_pngs_objs / 255. #Normalize [0,1] midcurve_pngs_objs = midcurve_pngs_objs / 255. #Normalize [0,1] #profile_pngs_objs = (profile_pngs_objs - 127.5)/127.5 #Normalize [-1, 1] #midcurve_pngs_objs = (midcurve_pngs_objs - 127.5)/127.5 #Normalize [-1, 1] x_coord = np.zeros(shape=(128, 128, 1)) y_coord = np.zeros(shape=(128, 128, 1))