Example #1
0
    def _with_predictions(self):
        self._logger.debug('__init__')
        for video_idx, video in enumerate(self._videos):
            filename = re.match(r'[\.\/\w]*\/(\w+).\w+', video.path)
            if filename is None:
                logging.ERROR('Check paths videos, template to extract video name'
                              ' does not match')
            filename = filename.group(1)
            self._videoname2idx[filename] = video_idx
            self._idx2videoname[video_idx] = filename

            names = np.asarray([video_idx] * video.n_frames).reshape((-1, 1))
            idxs = np.asarray(list(range(0, video.n_frames))).reshape((-1, 1))
            if self._regression:
                gt_file = np.asarray(video.pose.frame_labels).reshape((-1, 1))
            else:
                if opt.gt_training:
                    gt_file = np.asarray(video._gt).reshape((-1, 1))
                else:
                    gt_file = np.asarray(video._z).reshape((-1, 1))
            if self._features is None:
                features = video.features()
            else:
                features = self._features[video.global_range]
            temp_feature_list = join_data(None,
                                          (names, idxs, gt_file, features),
                                          np.hstack)
            self._feature_list = join_data(self._feature_list,
                                           temp_feature_list,
                                           np.vstack)
        self._features = None
Example #2
0
    def _with_gt(self):
        self._logger.debug('__init__')
        fileindex = 0
        len_file = join(self._root_dir, 'segments', 'lens.txt')
        with open(len_file, 'r') as f:
            for line in f:
                if self._subaction not in line:
                    continue
                match = re.match(r'(\w*)\.\w*\s*(\d*)', line)
                filename = match.group(1)
                filepath = filename
                if opt.data_type == 2:
                    filepath = self._subaction + '/' + filename
                self._videoname2idx[filename] = fileindex
                self._idx2videoname[fileindex] = filename
                fileindex += 1

                n_frames = int(match.group(2))
                # because of there can be inconsistency between number of gt labels and
                # corresponding number of frames for current representation
                if len(self.gt_map.gt[filename]) == n_frames:
                    names = np.asarray([self._videoname2idx[filename]] * n_frames)\
                        .reshape((-1, 1))
                    idxs = np.asarray(list(range(0, n_frames))).reshape((-1, 1))
                    gt_file = np.asarray(self.gt_map.gt[filename]).reshape((-1, 1))
                    features = np.loadtxt(join(self._root_dir, 'ascii',
                                               filepath + '.%s' % self._end))
                    if opt.data_type == 2:
                        features = features[:, 1:]
                    temp_feature_list = join_data(None,
                                                  (names, idxs, gt_file, features),
                                                  np.hstack)
                else:
                    min_len = np.min((len(self.gt_map.gt[filename]), n_frames))
                    names = np.asarray([self._videoname2idx[filename]] * min_len)\
                        .reshape((-1, 1))
                    idxs = np.asarray(list(range(0, min_len))).reshape((-1, 1))
                    gt_file = np.asarray(self.gt_map.gt[filename][:min_len]).reshape((-1, 1))
                    features = np.loadtxt(join(self._root_dir, 'ascii',
                                               filepath + '.%s' % self._end))[:min_len]
                    if opt.data_type == 2:
                        features = features[:, 1:]
                    temp_feature_list = join_data(None,
                                                  (names, idxs, gt_file, features),
                                                  np.hstack)
                self._feature_list = join_data(self._feature_list,
                                               temp_feature_list,
                                               np.vstack)
Example #3
0
    def _for_vae(self):
        # todo: different types of including time domain
        self._logger.debug('__init__')
        for video_idx, video in enumerate(self._videos):
            self._videoname2idx[video.name] = video_idx
            self._idx2videoname[video_idx] = video.name

            names = np.asarray([video_idx] * video.n_frames).reshape((-1, 1))
            idxs = np.asarray(list(range(0, video.n_frames))).reshape((-1, 1))
            gt_file = np.zeros(video.n_frames).reshape((-1, 1))
            if opt.vae_dim == 1:
                relative_time = np.asarray(video.pose.frame_labels).reshape((-1, 1))
                gt_file = relative_time.copy()
            else:
                relative_time = video.pose.relative_segments()
            if self._features is None:
                features = video.features()
            else:
                features = self._features[video.global_range]

            if opt.concat > 1:
                video_feature_concat = features[:]
                last_frame = features[-1]
                for i in range(opt.concat - 1):
                    video_feature_concat = np.roll(video_feature_concat, -1, axis=0)
                    video_feature_concat[-1] = last_frame
                    features = join_data(features,
                                         video_feature_concat,
                                         np.hstack)

            relative_time *= opt.time_weight
            if not opt.label:
                temp_feature_list = join_data(None,
                                              (names, idxs, gt_file,
                                               features, relative_time),
                                              np.hstack)
            else:
                labels = np.asarray(video._z).reshape((-1, 1))
                temp_feature_list = join_data(None,
                                              (names, idxs, gt_file,
                                               features, relative_time, labels),
                                              np.hstack)

            self._feature_list = join_data(self._feature_list,
                                           temp_feature_list,
                                           np.vstack)
Example #4
0
 def _tmp_read(self):
     del self.features
     self.features = None
     tmp_path = ops.join(self.config["dataset_root"], self.tmp)
     tmp_list = [int(i.split('.')[0]) for i in os.listdir(tmp_path)]
     for file_idx in sorted(tmp_list):
         logger.debug(file_idx)
         tmp_file_path = ops.join(tmp_path, '%d.npy' % file_idx)
         tmp_feat = np.load(tmp_file_path)
         self.features = join_data(self.features, tmp_feat, np.vstack)
         os.remove(tmp_file_path)
Example #5
0
 def labels(self, new_labels):
     self._labels = join_data(self._labels, new_labels, np.hstack)
     self._sizes += [self.size] * len(new_labels)
Example #6
0
 def data(self, new_data):
     self._data = join_data(self._data, new_data, np.vstack)
Example #7
0
def accuracy(train_loader,
             model,
             epoch,
             best_acc,
             resume=False,
             idx2name=None):
    """Calculate accuracy of trained embedding either just trained or with
    pretrained model"""
    if resume:
        logger.debug('Load the model for epoch %d' % epoch)
        model.load_state_dict(load_model(epoch))
    else:
        model.cpu()

    model.eval()
    acc = AverageMeter()

    logger.debug('Evaluation')
    with torch.no_grad():
        anchors = model.anchors().detach().numpy()

        video_save_feat = None
        name_cur = None
        for i, (input, k, name) in enumerate(train_loader):
            input = input.float()
            k = k.numpy()
            k = np.argmax(k, axis=1)

            output = model.embedded(input).cpu().numpy()
            if opt.save:
                name = name.numpy()
                name_cur = name[0] if name_cur is None else name_cur
                for idx, f in enumerate(output):
                    if name_cur == int(name[idx]):
                        video_save_feat = join_data(video_save_feat, f,
                                                    np.vstack)
                    else:
                        np.savetxt(
                            join(
                                opt.data, 'embed', '%d_%d_%s_' %
                                (opt.embed_dim, opt.data_type, str(opt.lr)) +
                                idx2name[name_cur]), video_save_feat)
                        video_save_feat = join_data(None, f, np.vstack)
                        name_cur = int(name[idx])
            dists = -2 * np.dot(output, anchors.T) + np.sum(anchors ** 2, axis=1) \
                    + np.sum(output ** 2, axis=1)[:, np.newaxis]

            dist = np.sum(np.argmin(dists, axis=1) == k,
                          dtype=float) / input.size(0)
            acc.update(dist, input.size(0))
            if i % 100 == 0 and i:
                logger.debug('Iter: [{0}/{1}]\t'
                             'Accuracy {acc.val:.4f} ({acc.avg:.4f})\t'.format(
                                 i, len(train_loader), acc=acc))
        if opt.save_feat:
            np.savetxt(
                join(
                    opt.data, 'embed',
                    '%d_%d_%s_' % (opt.embed_dim, opt.data_type, str(opt.lr)) +
                    idx2name[name_cur]), video_save_feat)
            np.savetxt(
                join(
                    opt.data, 'embed',
                    'anchors_%s_%d_%d_%s' % (opt.subaction, opt.embed_dim,
                                             opt.data_type, str(opt.lr))),
                anchors)
        if best_acc < acc.avg:
            best_acc = acc.avg
            logger.debug(
                'Accuracy {acc.val:.4f} ({acc.avg:.4f})\t(best:{0:.4f})'.
                format(best_acc, acc=acc))
    return best_acc