Example #1
0
 def test_set(self):
     if len(self.test_data) == 0:
         return [], []
     test_data = self.test_data
     x_train = utils.load_images(test_data['path'].values, self.input_shape)
     y_train = test_data['label'].values
     return x_train, y_train
Example #2
0
    def next_batch(self,
                   size=10,
                   force_stage=None,
                   reverse_entropy=False,
                   prediction=False):
        if self.is_done:
            raise ValueError(
                "Tried to sample a batch when there is nothing else to sample")

        logger.debug("Sampling a batch for {} set.".format(
            self.dataset.current_stage))
        self.dataset.set_current_stage()

        current_stage = force_stage if force_stage else self.dataset.current_stage

        if current_stage == Dataset.TEST:
            sampled_df = self.dataset.sample(size)
            return sampled_df, current_stage, [], [0.5] * len(
                sampled_df)  # TODO: This needs to be fixed

        # Generate training data
        sampled_df = self.dataset.sample(size * 5)
        if self.data_type == Dataset.IMAGE_TYPE:
            x_data = utils.load_images(sampled_df['path'].values,
                                       self.dataset.input_shape)
        if self.data_type == Dataset.TEXT_TYPE:
            x_data = sampled_df['text'].values

        scores = self.model.score(x_data)
        entropy_func = lambda scores: np.sum(scores * np.log(1 / scores),
                                             axis=-1)
        if type(scores) == list:
            entropy = np.array(
                [entropy_func(score).mean() for score in scores])
        else:
            entropy = entropy_func(scores)

        assert len(entropy.shape) == 1

        num = min(size, len(entropy) - 1)
        if reverse_entropy:
            entropy_indexes = np.argpartition(entropy, num)[:num]
        else:
            entropy_indexes = np.argpartition(-entropy, num)[:num]

        # Make predictions
        x_to_score = x_data[entropy_indexes]

        y_prediction = None
        if prediction and len(x_to_score) > 0:
            y_prediction = self.predict(x_to_score)

        response = (
            sampled_df.iloc[entropy_indexes],
            current_stage,
            y_prediction,
            entropy[entropy_indexes].tolist(),
        )
        return response
Example #3
0
 def unlabelled_set(self, size=MIN_UNSUPERVISED_EXAMPLES):
     data = self.sample(size)
     if len(data) > 0:
         x_train = utils.load_images(data['path'].values, self.input_shape)
         ids = data['path'].values
     else:
         x_train = []
         ids = []
     return x_train, ids
Example #4
0
 def _load_pred_data(self, pred_data_path=None):
     try:
         if pred_data_path is None:
             msg = "pred_data_path cannot be None type"
             raise Exception(msg)
         model_input_values = None
         if 'csv' in pred_data_path:
             # TODO: make sure this is grabbing only the most recent row of the df csv stream (sorted by timestamp etc.)
             model_input_values = pd.read_csv(pred_data_path)[0].values
         elif 'jpg' in pred_data_path:
             # TODO: make sure this is grabbing only the most recent row of the df csv stream (sorted by timestamp etc.)
             path = load_images(
                 self._s3_resource, pred_data_path
             )  #TODO: make sure load_images downloads the file locally and returns the file path of the local file
             img = image.load_img(path, target_size=(300, 300))
             x = image.img_to_array(img)
             model_input_values = np.expand_dims(x, axis=0)
             #TODO: add logic to delete the locally downloaded input file now that we have the prediction
         return {'input_data': model_input_values}
     except Exception as e:
         msg = "Error in _load_pred_data"
         raise e(msg)
Example #5
0
    def __init__(self, params: init.TrainingParamInitialization):

        self.img_size = params.img_size
        self.img_channel = params.img_channel
        self.alpha_channel = params.alpha_channel
        self.reflectance_channel = params.reflectance_channel

        self.batch_size = params.batch_size
        self.D_input_size = params.D_input_size
        self.G_input_size = params.G_input_size

        self.image_dir = params.image_dir
        self.checkpoint_gan = params.checkpoint_gan
        self.sample_dir = params.sample_dir

        self.result_dir = params.result_dir

        self.g_learning_rate = params.g_learning_rate
        self.d_learning_rate = params.d_learning_rate
        self.d_clip = params.d_clip  # gradient clip on the generater
        self.gan_model = params.gan_model  # valinila gan, WGAN, and LSGAN
        self.optimizer = params.optimizer

        self.X = tf.placeholder(
            tf.float32,
            shape=[None, self.img_size, self.img_size, self.img_channel])
        self.Z = tf.placeholder(
            tf.float32,
            shape=[None, self.img_size, self.img_size, self.img_channel])
        self.BG = tf.placeholder(
            tf.float32,
            shape=[None, self.img_size, self.img_size, self.img_channel])

        self.iter_step = params.iter_step
        self.data = utils.load_images(self.image_dir, self.img_size)

        print('start building GAN graphics...')
        self.build_graphics()
Example #6
0
# Custom object needed for inference and training
custom_objects = {
    'BilinearUpSampling2D': BilinearUpSampling2D,
    'depth_loss_function': None
}

print('Loading model...')

# Load model into GPU / CPU
model = load_model(args.model, custom_objects=custom_objects, compile=False)

print('\nModel loaded ({0}).'.format(args.model))

# Input images
inputs = load_images(glob.glob(args.input))
print('\nLoaded ({0}) images of size {1}.'.format(inputs.shape[0],
                                                  inputs.shape[1:]))

# Compute results
outputs = predict(model, inputs)

#matplotlib problem on ubuntu terminal fix
#matplotlib.use('TkAgg')

# Display results
viz = display_images(outputs.copy(), inputs.copy())
plt.figure(figsize=(10, 5))
plt.imshow(viz)
plt.savefig('test.png')
plt.show()
Example #7
0
import pandas as pd
from utils.utils import grid_search_gabor_filters, load_images, create_dir_if_not_exists


if __name__ == '__main__':
    # using gridsearch to find the best gabor filter parameters(psi = const = 0)
    data_test, data_retest = load_images()

    static_test = data_test[:, :, 52, 1]
    moving_test = data_test[:, :, 52, 2]

    max_mi_test = grid_search_gabor_filters(static_test, moving_test)
    params_test = max_mi_test[1]
    df_test = pd.DataFrame(params_test)

    static_retest = data_retest[:, :, 52, 1]
    moving_retest = data_retest[:, :, 52, 1]

    max_mi_retest = grid_search_gabor_filters(static_retest, moving_retest)
    params_retest = max_mi_retest[1]
    df_retest = pd.DataFrame(params_retest)

    params_test_path = "resources/data/test/gabor_filter"
    params_retest_path = "resources/data/retest/gabor_filter"

    create_dir_if_not_exists(params_test_path)
    create_dir_if_not_exists(params_retest_path)

    df_test.to_csv(params_test_path + '/gabor_filter.csv', index=None, header=True)
    df_retest.to_csv(params_retest_path + '/gabor_filter.csv', index=None, header=True)
Example #8
0
from utils import utils as ul
import numpy as np
import matplotlib.pyplot as plt
import pickle
from dipy.data import default_sphere

if __name__ == '__main__':
    sphere = ul.create_sphere(30)
    points = ul.get_points_coordinates(sphere)

    data_test, data_retest = ul.load_images()
    test_img = data_test[0]
    test_bvals = data_test[1]
    test_bvecs = data_test[2]

    retest_img = data_retest[0]
    retest_bvals = data_retest[1]
    retest_bvecs = data_retest[2]
    # bvecs from http://www.emmanuelcaruyer.com/q-space-sampling.php
    bvecs_generated = np.array([[0.049, -0.919,
                                 -0.391], [0.726, 0.301, -0.618],
                                [-0.683, 0.255,
                                 -0.684], [0.845, -0.502, -0.186],
                                [-0.730, -0.619,
                                 -0.288], [-0.051, 0.039, 0.998],
                                [-0.018, 0.871,
                                 -0.491], [-0.444, 0.494, 0.747],
                                [-0.989, -0.086, -0.116],
                                [-0.470, -0.855, 0.221], [0.412, 0.400, 0.819],
                                [-0.552, 0.790,
                                 -0.267], [-0.123, -0.477, 0.871],