def __data_generator(self, batch_samples): # initialize images and labels tensors for faster processing X = np.empty((len(batch_samples), *self.img_crop_dims, 3)) y = np.empty((len(batch_samples), self.n_classes)) for i, sample in enumerate(batch_samples): # load and randomly augment image img_file = os.path.join( self.img_dir, '{}.{}'.format(sample['image_id'], self.img_format)) img = utils.load_image(img_file, self.img_load_dims) if img is not None: img = utils.random_crop(img, self.img_crop_dims) img = utils.random_horizontal_flip(img) X[i, ] = img # normalize labels y[i, ] = utils.normalize_labels(sample['label']) # apply basenet specific preprocessing # input is 4D numpy array of RGB values within [0, 255] X = self.basenet_preprocess(X) return X, y
def __data_generator(self, batch_samples): # initialize images and labels tensors for faster processing X = np.empty((len(batch_samples), *self.img_load_dims, 3)) y = np.empty((len(batch_samples), self.n_classes)) for i, sample in enumerate(batch_samples): # load and randomly augment image img_file = os.path.join(self.img_dir, '{}.{}'.format(sample['image_id'], self.img_format)) img = utils.load_image(img_file, self.img_load_dims) if img is not None: X[i, ] = img # normalize labels if sample.get('label') is not None: y[i, ] = utils.normalize_labels(sample['label']) # apply basenet specific preprocessing # input is 4D numpy array of RGB values within [0, 255] X = self.basenet_preprocess(X) return X, y
def test_normalize_label(self): labels = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) normed_label = utils.normalize_labels(labels) np.testing.assert_array_equal(np.array([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1]), normed_label)
def test_normalize_label(self): labels = np.array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) normed_label = utils.normalize_labels(labels) np.testing.assert_array_equal( np.array([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1]), normed_label)