def run_parallel(datasets, f, cmp_class_args, preprocess_args, param, metric): f_run = functools.partial(f, cmp_class_args=cmp_class_args, preprocess_args=preprocess_args, param=param, metric=metric) datasets = map(lambda x: [x], datasets) utils.parallel_exec(f_run, datasets)
def run_parallel(metric, eps_hours, min_fraction_of_clients): dt_ranges = list(utils.iter_dt_range()) f_localize_events = functools.partial( localize_events, metric=metric, eps_hours=eps_hours, min_fraction_of_clients=min_fraction_of_clients) utils.parallel_exec(f_localize_events, dt_ranges)
def run_parallel(metric, eps_hours): dt_ranges = list(utils.iter_dt_range()) fp_voting = functools.partial(voting, metric=metric, in_dir="paths", eps_hours=eps_hours) utils.parallel_exec(fp_voting, dt_ranges) fp_voting = functools.partial(voting, metric=metric, in_dir="names", eps_hours=eps_hours) utils.parallel_exec(fp_voting, dt_ranges)
def run_parallel(dir_model, metric, preprocess_args): dt_ranges = list(utils.iter_dt_range()) fp_print_cps = functools.partial(print_cps, dir_model=dir_model, metric=metric, preprocess_args=preprocess_args) utils.parallel_exec(fp_print_cps, dt_ranges) fp_print_per_name = functools.partial(unsupervised_utils.print_per_name, metric=metric, file_name="cps_per_mac.csv") utils.parallel_exec(fp_print_per_name, dt_ranges) fp_print_per_path = functools.partial(unsupervised_utils.print_per_path, metric=metric, file_name="cps_per_mac.csv") utils.parallel_exec(fp_print_per_path, dt_ranges)
def run_parallel(metric, min_seg_len, filtered): dt_ranges = list(utils.iter_dt_range()) fp_print_empty_segs = functools.partial(print_empty_segs, metric=metric, min_seg_len=min_seg_len, filtered=filtered, plot=False) utils.parallel_exec(fp_print_empty_segs, dt_ranges) fp_print_per_name = functools.partial(unsupervised_utils.print_per_name, metric=metric, file_name="empty_segs_per_mac.csv") utils.parallel_exec(fp_print_per_name, dt_ranges) fp_print_per_path = functools.partial(unsupervised_utils.print_per_path, metric=metric, file_name="empty_segs_per_mac.csv") utils.parallel_exec(fp_print_per_path, dt_ranges)
def run_parallel(metric): dt_ranges = list(utils.iter_dt_range()) f_plot_per_name = functools.partial(plot_per_name, metric=metric, preprocess_args=preprocess_args) utils.parallel_exec(f_plot_per_name, dt_ranges)
def run_parallel(): dt_ranges = list(utils.iter_dt_range()) utils.parallel_exec(process_graphs, dt_ranges)
def run_parallel(): mac_node = read_input.get_mac_node() dt_ranges = list(utils.iter_dt_range()) f_print_all = functools.partial(print_all, mac_node=mac_node) utils.parallel_exec(f_print_all, dt_ranges)
def run_parallel(): dt_ranges = list(utils.iter_dt_range()) utils.parallel_exec(create_dataset_unsupervised, dt_ranges)
def run_parallel(preprocess_args): dt_ranges = list(utils.iter_dt_range()) fp = functools.partial(plot_latencies_traceroute, preprocess_args=preprocess_args) utils.parallel_exec(fp, dt_ranges)
def run_parallel(metric, only_unique_traceroute): dt_ranges = list(utils.iter_dt_range()) f_plot_per_node = \ functools.partial(plot_per_node, metric=metric, only_unique_traceroute=only_unique_traceroute) utils.parallel_exec(f_plot_per_node, dt_ranges)