Example #1
0
def main(args):
    utils.init_distributed_mode(args)
    print(args)

    # device = torch.device(args.device)
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    print("Loading data")

    # dataset, num_classes = get_dataset(args.dataset, "train", get_transform(train=True), args.data_path)
    # dataset_test, _ = get_dataset(args.dataset, "val", get_transform(train=False), args.data_path)
    dataset = CustomDataset(args.img_data_path,
                            args.anno_data_path,
                            transforms=get_transform(train=True))
    dataset_size = len(dataset)
    indices = list(range(dataset_size))
    split = int(np.floor(.2 * dataset_size))
    random_seed = 42
    np.random.seed(random_seed)
    np.random.shuffle(indices)
    train_indices, val_indices = indices[split:], indices[:split]
    train_sampler = SubsetRandomSampler(train_indices)
    test_sampler = SubsetRandomSampler(val_indices)

    print("Creating data loaders")
    # if args.distributed:
    #     train_sampler = torch.utils.data.distributed.DistributedSampler(dataset_train)
    #     test_sampler = torch.utils.data.distributed.DistributedSampler(dataset_test)
    # else:
    #     train_sampler = torch.utils.data.RandomSampler(dataset_train)
    #     test_sampler = torch.utils.data.SequentialSampler(dataset_test)
    #
    # if args.aspect_ratio_group_factor >= 0:
    #     group_ids = create_aspect_ratio_groups(dataset_train, k=args.aspect_ratio_group_factor)
    #     train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids, args.batch_size)
    # else:
    #     train_batch_sampler = torch.utils.data.BatchSampler(
    #         train_sampler, args.batch_size, drop_last=True)

    data_loader = torch.utils.data.DataLoader(dataset,
                                              batch_size=2,
                                              sampler=train_sampler,
                                              num_workers=args.workers,
                                              collate_fn=utils.collate_fn)

    data_loader_test = torch.utils.data.DataLoader(dataset,
                                                   batch_size=1,
                                                   sampler=test_sampler,
                                                   num_workers=args.workers,
                                                   collate_fn=utils.collate_fn)

    print("Creating model")
    num_classes = 2  # 1 class (Car) + background
    model = torchvision.models.detection.__dict__[args.model](
        num_classes=num_classes, pretrained=args.pretrained)
    model.to(device)

    model_without_ddp = model
    # if args.distributed:
    #     model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
    #     model_without_ddp = model.module

    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = torch.optim.SGD(params,
                                lr=args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    # lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)
    lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)

    if args.resume:
        checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
        args.start_epoch = checkpoint['epoch'] + 1

    if args.test_only:
        evaluate(model, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
    for epoch in range(args.start_epoch, args.epochs):
        # if args.distributed:
        #     train_sampler.set_epoch(epoch)
        train_one_epoch(model, optimizer, data_loader, device, epoch,
                        args.print_freq)
        lr_scheduler.step()
        if args.output_dir:
            utils.save_on_master(
                {
                    'model': model_without_ddp.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'lr_scheduler': lr_scheduler.state_dict(),
                    'args': args,
                    'epoch': epoch
                }, os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))

        # evaluate after every epoch
        evaluate(model, data_loader_test, device=device)

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
Example #2
0
def main(args):
    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

    # Data loading code
    print("Loading data")

    dataset, num_classes = get_dataset(args.dataset, "train",
                                       get_transform(train=True),
                                       args.data_path)
    dataset_test, _ = get_dataset(args.dataset, "val",
                                  get_transform(train=False), args.data_path)

    print("Creating data loaders")
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(
            dataset)
        test_sampler = torch.utils.data.distributed.DistributedSampler(
            dataset_test)
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    if args.aspect_ratio_group_factor >= 0:
        group_ids = create_aspect_ratio_groups(
            dataset, k=args.aspect_ratio_group_factor)
        train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids,
                                                  args.batch_size)
    else:
        train_batch_sampler = torch.utils.data.BatchSampler(train_sampler,
                                                            args.batch_size,
                                                            drop_last=True)

    data_loader = torch.utils.data.DataLoader(
        dataset,
        batch_sampler=train_batch_sampler,
        num_workers=args.workers,
        collate_fn=utils.collate_fn)

    data_loader_test = torch.utils.data.DataLoader(dataset_test,
                                                   batch_size=1,
                                                   sampler=test_sampler,
                                                   num_workers=args.workers,
                                                   collate_fn=utils.collate_fn)

    print("Creating model")
    # model = torchvision.models.detection.__dict__[args.model](num_classes=num_classes,
    #                                                          pretrained=args.pretrained)
    model = get_model(num_classes=num_classes)
    model.to(device)

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.gpu])
        model_without_ddp = model.module

    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = torch.optim.SGD(params,
                                lr=args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    # lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_step_size, gamma=args.lr_gamma)
    lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)

    if args.resume:
        print("----------------------Resume--------------")
        checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
        args.start_epoch = checkpoint['epoch'] + 1

    if args.test_only:
        evaluate(model, data_loader_test, device=device)
        return

    print("Start training")
    start_time = time.time()
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        train_one_epoch(model, optimizer, data_loader, device, epoch,
                        args.print_freq)
        lr_scheduler.step()
        if args.output_dir:
            utils.save_on_master(
                {
                    'model': model_without_ddp.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'lr_scheduler': lr_scheduler.state_dict(),
                    'args': args,
                    'epoch': epoch
                }, os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))

        # evaluate after every epoch
        evaluate(model, data_loader_test, device=device)

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
Example #3
0
    def run(self):

        dataset = Datalayer(self.config,
                            transform=tf.Compose([
                                tf.ToTensor(),
                            ]))
        data_loader = DataLoader(
            dataset=dataset,
            shuffle=True,
            batch_size=self.config['Dataset']['BatchSize'],
            num_workers=self.config['Dataset']['NumWorkers'],
            pin_memory=True)
        # 创建模型
        model = getModels(self.config['Model']['Name'],
                          num_classes=self.config['Model']['NumClass'],
                          pretrained=self.config['Model']['IsPretrained']).to(
                              self.device)
        # 创建损失函数
        criterion = getLossFuns()
        # 创建优化器
        optimizer = make_optimizer(cfg=self.config, model=model)
        lr_scheduler = GeneralLR_Scheduler(optimizer,
                                           self.config,
                                           max_iter=len(data_loader) *
                                           self.config['Dataset']['Epochs'])
        start_epoch = 0
        # 恢复训练
        if self.config['Model']['IsResume']:
            checkpoint = torch.load(os.path.join(
                self.output_model_path, self.config['Misc']['BestModelName']),
                                    map_location='cpu')
            model.load_state_dict(checkpoint['model'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
            start_epoch = checkpoint['epoch'] + 1
        # 开始训练
        print("Start training")
        for epoch in range(start_epoch, self.config['Dataset']['Epochs']):

            self.train_one_epoch(model,
                                 criterion,
                                 optimizer,
                                 lr_scheduler,
                                 data_loader,
                                 self.device,
                                 epoch,
                                 print_freq=10)

            if self.output_model_path:
                checkpoint = {
                    'model': model.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'lr_scheduler': lr_scheduler.state_dict(),
                    'epoch': epoch
                }

                utils.save_on_master(
                    checkpoint,
                    os.path.join(self.output_model_path,
                                 self.config['Misc']['BestModelName']))
                if epoch % self.config['Model']['OutputFreq'] == 0:
                    utils.save_on_master(
                        checkpoint,
                        os.path.join(self.output_model_path,
                                     'model_{}.pth'.format(epoch)))
Example #4
0
def main(args):
    cfg = get_default_cfg()

    cfg.merge_from_file('/home/lh/project/SeqNet/exp_cuhk/config.yaml')
    cfg.merge_from_list(args.opts)
    cfg.freeze()

    device = torch.device(cfg.DEVICE)
    if cfg.SEED >= 0:
        set_random_seed(cfg.SEED)

    print("Creating model")
    model = SeqNet(cfg)
    model.to(device)

    print("Loading data")
    train_loader = build_train_loader(cfg)
    gallery_loader, query_loader = build_test_loader(cfg)

    if args.eval:
        assert args.ckpt, "--ckpt must be specified when --eval enabled"
        resume_from_ckpt(args.ckpt, model)
        evaluate_performance(
            model,
            gallery_loader,
            query_loader,
            device,
            use_gt=cfg.EVAL_USE_GT,
            use_cache=cfg.EVAL_USE_CACHE,
            use_cbgm=cfg.EVAL_USE_CBGM,
        )
        exit(0)

    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = torch.optim.SGD(
        params,
        lr=cfg.SOLVER.BASE_LR,
        momentum=cfg.SOLVER.SGD_MOMENTUM,
        weight_decay=cfg.SOLVER.WEIGHT_DECAY,
    )

    lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
        optimizer, milestones=cfg.SOLVER.LR_DECAY_MILESTONES, gamma=0.1)

    start_epoch = 0
    if args.resume:
        assert args.ckpt, "--ckpt must be specified when --resume enabled"
        start_epoch = resume_from_ckpt(args.ckpt, model, optimizer,
                                       lr_scheduler) + 1

    print("Creating output folder")
    output_dir = cfg.OUTPUT_DIR
    mkdir(output_dir)
    path = osp.join(output_dir, "config.yaml")
    with open(path, "w") as f:
        f.write(cfg.dump())
    print(f"Full config is saved to {path}")
    tfboard = None
    if cfg.TF_BOARD:
        from torch.utils.tensorboard import SummaryWriter

        tf_log_path = osp.join(output_dir, "tf_log")
        mkdir(tf_log_path)
        tfboard = SummaryWriter(log_dir=tf_log_path)
        print(f"TensorBoard files are saved to {tf_log_path}")

    print("Start training")
    start_time = time.time()
    for epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCHS):
        train_one_epoch(cfg, model, optimizer, train_loader, device, epoch,
                        tfboard)
        lr_scheduler.step()

        if (epoch + 1
            ) % cfg.EVAL_PERIOD == 0 or epoch == cfg.SOLVER.MAX_EPOCHS - 1:
            evaluate_performance(
                model,
                gallery_loader,
                query_loader,
                device,
                use_gt=cfg.EVAL_USE_GT,
                use_cache=cfg.EVAL_USE_CACHE,
                use_cbgm=cfg.EVAL_USE_CBGM,
            )

        if (epoch + 1
            ) % cfg.CKPT_PERIOD == 0 or epoch == cfg.SOLVER.MAX_EPOCHS - 1:
            save_on_master(
                {
                    "model": model.state_dict(),
                    "optimizer": optimizer.state_dict(),
                    "lr_scheduler": lr_scheduler.state_dict(),
                    "epoch": epoch,
                },
                osp.join(output_dir, f"epoch_{epoch}.pth"),
            )

    if tfboard:
        tfboard.close()
    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print(f"Total training time {total_time_str}")
Example #5
0
def main(args):
    utils.init_distributed_mode(args)
    print(args)

    device = torch.device(args.device)

    # Data loading code
    print("Loading data")

    dataset, num_classes = get_dataset(
        args.dataset, "train" if args.dataset == 'coco' else 'trainval',
        get_transform(train=True), args.data_path)
    dataset_test, _ = get_dataset(args.dataset,
                                  "val" if args.dataset == 'coco' else 'test',
                                  get_transform(train=False), args.data_path)

    print("Creating data loaderssss")
    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(
            dataset)
        test_sampler = torch.utils.data.distributed.DistributedSampler(
            dataset_test)
    else:
        train_sampler = torch.utils.data.RandomSampler(dataset)
        test_sampler = torch.utils.data.SequentialSampler(dataset_test)

    if args.aspect_ratio_group_factor >= 0:
        group_ids = create_aspect_ratio_groups(
            dataset, k=args.aspect_ratio_group_factor)
        train_batch_sampler = GroupedBatchSampler(train_sampler, group_ids,
                                                  args.batch_size)
    else:
        train_batch_sampler = torch.utils.data.BatchSampler(train_sampler,
                                                            args.batch_size,
                                                            drop_last=True)

    data_loader = torch.utils.data.DataLoader(
        dataset,
        batch_sampler=train_batch_sampler,
        num_workers=args.workers,
        collate_fn=utils.collate_fn)

    data_loader_test = torch.utils.data.DataLoader(dataset_test,
                                                   batch_size=1,
                                                   sampler=test_sampler,
                                                   num_workers=args.workers,
                                                   collate_fn=utils.collate_fn)

    print("Creating model")
    # model = torchvision.models.detection.__dict__[args.model](num_classes=num_classes,
    #                                                          pretrained=args.pretrained)

    model = get_model(num_classes=num_classes)
    model.to(device)

    model_without_ddp = model
    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.gpu])
        model_without_ddp = model.module

    params = [p for p in model.parameters() if p.requires_grad]
    optimizer = torch.optim.SGD(params,
                                lr=args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                   step_size=args.lr_step_size,
                                                   gamma=args.lr_gamma)
    # lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args.lr_steps, gamma=args.lr_gamma)

    if args.resume:
        checkpoint = torch.load(args.resume, map_location='cpu')
        model_without_ddp.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])

    if args.test_only:
        voc_evaluate(model, data_loader_test, device=device)
        return
    pytorch_total_params = sum(p.numel() for p in model.parameters())
    print("model params", pytorch_total_params)
    temp = torch.randn(1, 3, 500, 353, device='cuda')
    model.eval()
    macs, params = flop_count(model, (temp, ))
    # macs, params = clever_format([macs, params], "%.3f")
    print("macs", macs.items())
    # print("macs", params.items())
    print("Start training")
    start_time = time.time()
    best_map = 0
    for epoch in range(args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        train_one_epoch(model, optimizer, data_loader, device, epoch,
                        args.print_freq)
        lr_scheduler.step()
        if args.output_dir and epoch % 9 == 0:
            utils.save_on_master(
                {
                    'model': model_without_ddp.state_dict(),
                    'optimizer': optimizer.state_dict(),
                    'lr_scheduler': lr_scheduler.state_dict(),
                    'args': args
                }, os.path.join(args.output_dir, 'model_{}.pth'.format(epoch)))

        # evaluate after every epoch
        if 'coco' in args.dataset:
            coco_evaluate(model, data_loader_test, device=device)
        elif 'voc' in args.dataset:
            map = voc_evaluate(model, data_loader_test, device=device)
            if map > best_map:
                best_map = map
            print("Best Mean AP")
            print(best_map)
        else:
            print(
                f'No evaluation method available for the dataset {args.dataset}'
            )

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print('Training time {}'.format(total_time_str))
    if args.output_dir:
        utils.save_on_master(
            {
                'model': model_without_ddp.state_dict(),
                'optimizer': optimizer.state_dict(),
                'lr_scheduler': lr_scheduler.state_dict(),
                'args': args
            }, os.path.join(args.output_dir, 'model_{}.pth'.format("final")))