# Register custom envs import utils.import_envs # noqa: F401 pytype: disable=import-error from utils.exp_manager import ExperimentManager from utils.utils import ALGOS, StoreDict seaborn.set() if __name__ == "__main__": # noqa: C901 parser = argparse.ArgumentParser() parser.add_argument( "--algo", help="RL Algorithm", default="ppo", type=str, required=False, choices=list(ALGOS.keys()), ) parser.add_argument("--env", type=str, default="CartPole-v1", help="environment ID") parser.add_argument( "-tb", "--tensorboard-log", help="Tensorboard log dir", default="", type=str ) parser.add_argument( "-i", "--trained-agent", help="Path to a pretrained agent to continue training", default="", type=str, ) parser.add_argument( "--truncate-last-trajectory", help="When using HER with online sampling the last trajectory "
import gym_fishing import numpy as np import seaborn import torch as th from stable_baselines3.common.utils import set_random_seed # Register custom envs import utils.import_envs # noqa: F401 pytype: disable=import-error from utils.exp_manager import ExperimentManager from utils.utils import ALGOS, StoreDict seaborn.set() if __name__ == "__main__": # noqa: C901 parser = argparse.ArgumentParser() parser.add_argument("--algo", help="RL Algorithm", default="ppo", type=str, required=False, choices=list(ALGOS.keys())) parser.add_argument("--env", type=str, default="fishing-v1", help="environment ID") parser.add_argument("-tb", "--tensorboard-log", help="Tensorboard log dir", default="", type=str) parser.add_argument("-i", "--trained-agent", help="Path to a pretrained agent to continue training", default="", type=str) parser.add_argument( "--truncate-last-trajectory", help="When using HER with online sampling the last trajectory " "in the replay buffer will be truncated after reloading the replay buffer.", default=True, type=bool, ) parser.add_argument("-n", "--n-timesteps", help="Overwrite the number of timesteps", default=-1, type=int) parser.add_argument("--num-threads", help="Number of threads for PyTorch (-1 to use default)", default=-1, type=int) parser.add_argument("--log-interval", help="Override log interval (default: -1, no change)", default=-1, type=int) parser.add_argument( "--eval-freq", help="Evaluate the agent every n steps (if negative, no evaluation)", default=10000, type=int
from stable_baselines3.common.utils import set_random_seed from utils.exp_manager import ExperimentManager from utils.utils import ALGOS, StoreDict seaborn.set() if __name__ == "__main__": # noqa: C901 parser = argparse.ArgumentParser() parser.add_argument( "--algo", help="RL Algorithm", default="ppo", type=str, required=False, choices=list( ALGOS.keys())) parser.add_argument( "--env", type=str, default="CartPole-v1", help="environment ID") parser.add_argument( "-tb", "--tensorboard-log", help="Tensorboard log dir", default="", type=str) parser.add_argument( "-i", "--trained-agent", help="Path to a pretrained agent to continue training",
import argparse import os import time import gym import numpy as np from stable_baselines.common import set_global_seeds from config import ENV_ID from utils.utils import ALGOS, create_test_env, get_latest_run_id, get_saved_hyperparams parser = argparse.ArgumentParser() parser.add_argument('-f', '--folder', help='Log folder', type=str, default='logs') parser.add_argument('--algo', help='RL Algorithm', default='sac', type=str, required=False, choices=list(ALGOS.keys())) parser.add_argument('-n', '--n-timesteps', help='number of timesteps', default=1000, type=int) parser.add_argument('--exp-id', help='Experiment ID (-1: no exp folder, 0: latest)', default=0, type=int) parser.add_argument('--verbose', help='Verbose mode (0: no output, 1: INFO)', default=1, type=int) parser.add_argument('--no-render', action='store_true', default=False, help='Do not render the environment (useful for tests)') parser.add_argument('--deterministic', action='store_true', default=False, help='Use deterministic actions') parser.add_argument('--norm-reward', action='store_true', default=False, help='Normalize reward if applicable (trained with VecNormalize)') parser.add_argument('--seed', help='Random generator seed', type=int, default=0) parser.add_argument('--reward-log', help='Where to log reward', default='', type=str) parser.add_argument('-vae', '--vae-path', help='Path to saved VAE', type=str, default='')