# Implementation of DecisionTreeClassification on BreastCancerData # import matplotlib.pyplot as plt from sklearn.tree import DecisionTreeClassifier from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score, roc_auc_score,classification_report from sklearn.decomposition import PCA import pandas as pd from utils.utils_scores import scores flag_pca = False data, target = load_breast_cancer(return_X_y=True) data = pd.DataFrame(data) target = pd.DataFrame(target) if flag_pca: pca = PCA() data = pca.fit_transform(data) data_train, data_test, target_train, target_test = train_test_split(data, target, test_size=0.1,random_state=0) DecisionTreeClassifierObject = DecisionTreeClassifier() DecisionTreeClassifierObject.fit(data_train, target_train) target_test_predict = DecisionTreeClassifierObject.predict(data_test) scores(target_test,target_test_predict)
data, target = load_breast_cancer(return_X_y=True) data = pd.DataFrame(data) target = pd.DataFrame(target) target = to_categorical(target) if flag_pca: pca = PCA() data = pca.fit_transform(data) data_train, data_test, target_train, target_test = train_test_split(data, target, test_size=0.1, random_state=0) input_shape = len(data_train.columns) model = Sequential() # Input - Layer model.add(layers.Dense(50, activation="relu", input_shape=(input_shape,))) # Hidden - Layers model.add(layers.Dropout(0.3, noise_shape=None, seed=None)) model.add(layers.Dense(50, activation="relu")) model.add(layers.Dropout(0.2, noise_shape=None, seed=None)) model.add(layers.Dense(50, activation="relu")) # Output- Layer model.add(layers.Dense(2, activation="sigmoid")) model.summary() model.compile(optimizer='adam', loss="binary_crossentropy", metrics=["accuracy"]) model.fit(data_train, target_train, epochs=50, verbose=1) y_predict = model.predict(data_test) scores(pd.DataFrame(target_test), pd.DataFrame(y_predict.round()))