Example #1
0
 def __init__(self, in_channels, out_channels, skip_channels, kernel_size=3, stride=2, dilation=1, separable=False, causal=True, nonlinear='gated', norm=True, conditioning=None, enc_dim=None, enc_kernel_size=None, enc_stride=None, eps=EPS):
     super().__init__()
     
     self.kernel_size, self.stride, self.dilation = kernel_size, stride, dilation
     self.separable = separable
     self.nonlinear, self.norm = nonlinear, norm
     
     # TODO: implement nonlinear & norm
     if nonlinear == 'gated':
         self.conv1d = GatedConv1d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, separable=separable, causal=causal, conditioning=conditioning, enc_dim=enc_dim, enc_kernel_size=enc_kernel_size, enc_stride=enc_stride)
     elif nonlinear == 'relu':
         raise NotImplementedError("No implementation of nonlinear ReLU.")
         net = []
         if separable:
             net.append(SeparableConv1d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, bias=False))
         else:
             net.append(nn.Conv1d(in_channels, in_channels, kernel_size=kernel_size, stride=stride, dilation=dilation, bias=False))
         net.append(nn.ReLU())
         self.conv1d = nn.Sequential(*net)
     else:
         raise ValueError("Not support {}".format(nonlinear))
         
     if norm:
         if causal:
             self.norm1d = choose_layer_norm(out_channels, causal, eps=eps)
         else:
             self.norm1d = nn.BatchNorm1d(out_channels, eps=eps)
         
     self.bottleneck_conv1d_output = nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=1)
     self.bottleneck_conv1d_skip = nn.Conv1d(in_channels, skip_channels, kernel_size=1, stride=1)
    def __init__(self,
                 num_features,
                 hidden_channels,
                 causal=False,
                 norm=True,
                 eps=EPS):
        super().__init__()

        if causal:
            bidirectional = False
            num_directions = 1  # uni-direction
        else:
            bidirectional = True
            num_directions = 2  # bi-direction

        self.norm = norm

        self.rnn = nn.LSTM(num_features,
                           hidden_channels,
                           batch_first=False,
                           bidirectional=bidirectional)
        self.relu = nn.ReLU()
        self.fc = nn.Linear(num_directions * hidden_channels, num_features)

        if self.norm:
            self.norm1d = choose_layer_norm(num_features,
                                            causal=causal,
                                            eps=eps)
    def __init__(self,
                 num_features,
                 hidden_channels=256,
                 skip_channels=256,
                 kernel_size=3,
                 stride=2,
                 dilation=1,
                 separable=False,
                 causal=True,
                 nonlinear=None,
                 norm=True,
                 dual_head=True,
                 eps=EPS):
        super().__init__()

        self.kernel_size, self.stride, self.dilation = kernel_size, stride, dilation
        self.separable, self.causal = separable, causal
        self.norm = norm
        self.dual_head = dual_head

        self.bottleneck_conv1d = nn.Conv1d(num_features,
                                           hidden_channels,
                                           kernel_size=1,
                                           stride=1)

        if nonlinear is not None:
            if nonlinear == 'prelu':
                self.nonlinear1d = nn.PReLU()
            else:
                raise ValueError("Not support {}".format(nonlinear))
            self.nonlinear = True
        else:
            self.nonlinear = False

        if norm:
            self.norm1d = choose_layer_norm(hidden_channels, causal, eps=eps)
        if separable:
            self.separable_conv1d = DepthwiseSeparableConv1d(
                hidden_channels,
                num_features,
                skip_channels=skip_channels,
                kernel_size=kernel_size,
                stride=stride,
                dilation=dilation,
                causal=causal,
                nonlinear=nonlinear,
                norm=norm,
                dual_head=dual_head,
                eps=eps)
        else:
            if dual_head:
                self.output_conv1d = nn.Conv1d(hidden_channels,
                                               num_features,
                                               kernel_size=kernel_size,
                                               dilation=dilation)
            self.skip_conv1d = nn.Conv1d(hidden_channels,
                                         skip_channels,
                                         kernel_size=kernel_size,
                                         dilation=dilation)
    def __init__(self, embed_dim, num_heads, causal=False, norm=True, eps=EPS):
        super().__init__()

        self.norm = norm

        self.multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)

        if self.norm:
            self.norm1d = choose_layer_norm(embed_dim, causal=causal, eps=eps)
    def __init__(self, num_features, hidden_channels, norm=True, eps=EPS):
        super().__init__()
        
        self.num_features, self.hidden_channels = num_features, hidden_channels
        num_directions = 2 # bi-direction
        self.norm = norm
        
        self.rnn = nn.LSTM(num_features, hidden_channels, batch_first=True, bidirectional=True)
        self.fc = nn.Linear(num_directions*hidden_channels, num_features)

        if self.norm:
            self.norm1d = choose_layer_norm(num_features, causal=False, eps=eps)
Example #6
0
    def __init__(self,
                 num_features,
                 hidden_channels,
                 causal,
                 norm=True,
                 eps=EPS):
        super().__init__()

        self.norm = norm

        if self.norm:
            self.norm1d = choose_layer_norm(embed_dim, causal=causal, eps=eps)

        self.multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
    def __init__(self,
                 num_features,
                 bottleneck_channels=64,
                 hidden_channels=128,
                 chunk_size=100,
                 hop_size=50,
                 num_blocks=6,
                 causal=True,
                 norm=True,
                 mask_nonlinear='sigmoid',
                 n_sources=2,
                 eps=EPS):
        super().__init__()

        self.num_features, self.n_sources = num_features, n_sources
        self.chunk_size, self.hop_size = chunk_size, hop_size
        self.norm = norm

        if self.norm:
            self.norm1d = choose_layer_norm(num_features,
                                            causal=causal,
                                            eps=eps)

        self.bottleneck_conv1d = nn.Conv1d(num_features,
                                           bottleneck_channels,
                                           kernel_size=1,
                                           stride=1)

        self.segment1d = Segment1d(chunk_size, hop_size)
        self.dprnn = DPRNN(bottleneck_channels,
                           hidden_channels,
                           num_blocks=num_blocks,
                           causal=causal,
                           norm=norm)
        self.overlap_add1d = OverlapAdd1d(chunk_size, hop_size)

        self.prelu = nn.PReLU()
        self.mask_conv1d = nn.Conv1d(bottleneck_channels,
                                     n_sources * num_features,
                                     kernel_size=1,
                                     stride=1)

        if mask_nonlinear == 'sigmoid':
            self.mask_nonlinear = nn.Sigmoid()
        elif mask_nonlinear == 'softmax':
            self.mask_nonlinear = nn.Softmax(dim=1)
        else:
            raise ValueError("Cannot support {}".format(mask_nonlinear))
Example #8
0
    def __init__(self,
                 num_features,
                 bottleneck_channels=128,
                 hidden_channels=256,
                 skip_channels=128,
                 kernel_size=3,
                 num_blocks=3,
                 num_layers=8,
                 dilated=True,
                 separable=True,
                 causal=True,
                 nonlinear='prelu',
                 norm=True,
                 mask_nonlinear='sigmoid',
                 n_sources=2,
                 eps=EPS):
        super().__init__()

        self.num_features, self.n_sources = num_features, n_sources

        self.norm1d = choose_layer_norm(num_features, causal=causal, eps=eps)
        self.bottleneck_conv1d = nn.Conv1d(num_features,
                                           bottleneck_channels,
                                           kernel_size=1,
                                           stride=1)
        self.tcn = TemporalConvNet(bottleneck_channels,
                                   hidden_channels=hidden_channels,
                                   skip_channels=skip_channels,
                                   kernel_size=kernel_size,
                                   num_blocks=num_blocks,
                                   num_layers=num_layers,
                                   dilated=dilated,
                                   separable=separable,
                                   causal=causal,
                                   nonlinear=nonlinear,
                                   norm=norm)
        self.prelu = nn.PReLU()
        self.mask_conv1d = nn.Conv1d(skip_channels,
                                     n_sources * num_features,
                                     kernel_size=1,
                                     stride=1)

        if mask_nonlinear == 'sigmoid':
            self.mask_nonlinear = nn.Sigmoid()
        elif mask_nonlinear == 'softmax':
            self.mask_nonlinear = nn.Softmax(dim=1)
        else:
            raise ValueError("Cannot support {}".format(mask_nonlinear))
    def __init__(self,
                 num_features,
                 bottleneck_channels=32,
                 hidden_channels=128,
                 chunk_size=100,
                 hop_size=None,
                 num_blocks=6,
                 num_heads=4,
                 causal=True,
                 norm=True,
                 mask_nonlinear='relu',
                 n_sources=2,
                 eps=EPS):
        super().__init__()

        if hop_size is None:
            hop_size = chunk_size // 2

        self.num_features, self.n_sources = num_features, n_sources
        self.chunk_size, self.hop_size = chunk_size, hop_size

        self.bottleneck_conv1d = nn.Conv1d(num_features,
                                           bottleneck_channels,
                                           kernel_size=1,
                                           stride=1)
        self.segment1d = Segment1d(chunk_size, hop_size)
        self.norm2d = choose_layer_norm(bottleneck_channels,
                                        causal=causal,
                                        eps=eps)

        self.dptransformer = DualPathTransformer(bottleneck_channels,
                                                 hidden_channels,
                                                 num_blocks=num_blocks,
                                                 num_heads=num_heads,
                                                 causal=causal,
                                                 norm=norm,
                                                 eps=eps)
        self.overlap_add1d = OverlapAdd1d(chunk_size, hop_size)
        self.gtu = GTU1d(bottleneck_channels, n_sources * num_features)

        if mask_nonlinear == 'relu':
            self.mask_nonlinear = nn.ReLU()
        elif mask_nonlinear == 'sigmoid':
            self.mask_nonlinear = nn.Sigmoid()
        elif mask_nonlinear == 'softmax':
            self.mask_nonlinear = nn.Softmax(dim=1)
        else:
            raise ValueError("Cannot support {}".format(mask_nonlinear))
    def __init__(self,
                 in_channels,
                 out_channels=256,
                 skip_channels=256,
                 kernel_size=3,
                 stride=2,
                 dilation=1,
                 causal=True,
                 nonlinear=None,
                 norm=True,
                 dual_head=True,
                 eps=EPS):
        super().__init__()

        self.dual_head = dual_head
        self.norm = norm
        self.eps = eps

        self.depthwise_conv1d = nn.Conv1d(in_channels,
                                          in_channels,
                                          kernel_size=kernel_size,
                                          stride=stride,
                                          dilation=dilation,
                                          groups=in_channels)

        if nonlinear is not None:
            if nonlinear == 'prelu':
                self.nonlinear1d = nn.PReLU()
            else:
                raise ValueError("Not support {}".format(nonlinear))
            self.nonlinear = True
        else:
            self.nonlinear = False

        if norm:
            self.norm1d = choose_layer_norm(in_channels, causal, eps=self.eps)

        if dual_head:
            self.output_pointwise_conv1d = nn.Conv1d(in_channels,
                                                     out_channels,
                                                     kernel_size=1,
                                                     stride=1)

        self.skip_pointwise_conv1d = nn.Conv1d(in_channels,
                                               skip_channels,
                                               kernel_size=1,
                                               stride=1)
Example #11
0
    def __init__(self, num_features, hidden_channels, causal, eps=EPS):
        super().__init__()

        self.num_features, self.hidden_channels = num_features, hidden_channels

        if causal:  # uni-direction
            self.rnn = nn.LSTM(num_features,
                               hidden_channels,
                               batch_first=True,
                               bidirectional=False)
        else:  # bi-direction
            self.rnn = nn.LSTM(num_features,
                               hidden_channels // 2,
                               batch_first=True,
                               bidirectional=True)

        self.fc = nn.Linear(hidden_channels, num_features)
        self.norm1d = choose_layer_norm(num_features, causal=False, eps=eps)