Example #1
0
def save_train_vg():
    prototxt = 'models/vg1_2/resnet50/test_cache.prototxt'
    model = 'data/models/vrd_rfcn/vg_resnet50_rfcn_iter_112000.caffemodel'
    caffe.set_mode_gpu()
    caffe.set_device(0)
    net = caffe.Net(prototxt, model, caffe.TEST)

    m = h5py.File('data/vg1_2_meta.h5', 'r')
    cache_hdf5 = h5py.File('output/vg_cache.h5', 'a')
    cnt = 0
    for k in m['gt/train'].keys():
        cnt += 1
        glog.info(cnt)

        path = zl.imid2path(m, k)
        im_path = C.get_vg_path_train(path)
        im_detect(net, im_path)
        data = net.blobs['conv_new_1'].data[...].astype(np.float16)
        cache_hdf5.create_dataset('train/%s' % k + '/conv_new_1',
                                  dtype='float16',
                                  data=data)
Example #2
0
def run_retrieval_vp_v2():
    # h5_path = 'output/sg_vrd_2016_result.classeme.hdf5'
    h5_path = 'output/precalc/vg1_2_vp2016_test_nms2_.4.hdf5'
    m = h5py.File('/home/zawlin/Dropbox/proj/vg1_2_meta.h5', 'r', 'core')
    m_vp = h5py.File('/home/zawlin/Dropbox/proj/vg1_2_vp_meta.h5', 'r', 'core')
    cache_path = 'output/cache/%s.pkl' % h5_path.split('/')[-1]
    data_root = '/home/zawlin/data/data_vrd/vg_1.2/'
    rlp_map = []
    for i in xrange(1, len(m_vp['meta/tri/idx2name'].keys())):
        tri = str(m_vp['meta/tri/idx2name'][str(i)][...])
        s_lbl = tri.split('_')[0]
        p_lbl = tri.split('_')[1]
        o_lbl = tri.split('_')[2]
        rlp_label = [
            zl.name2idx_cls(m, s_lbl),
            zl.name2idx_pre(m, p_lbl),
            zl.name2idx_cls(m, o_lbl)
        ]
        rlp_map.append(rlp_label)
    rlp_map = np.array(rlp_map)
    if os.path.exists(cache_path):
        print 'load from cache'
        h5f = zl.load(cache_path)
    else:
        h5_in = h5py.File(h5_path, 'r')
        h5f = {}
        print 'preloading data'
        for i in h5_in:
            h5f[i] = {}
            h5f[i]['labels'] = h5_in[i]['labels'][...]
            h5f[i]['confs'] = h5_in[i]['confs'][...]
            h5f[i]['boxes'] = h5_in[i]['boxes'][...]
        zl.save(cache_path, h5f)
        print 'preloading data done'
    retr_meta = zl.load('output/pkl/vg_retr_meta.pkl')
    thresh = 0.0
    images = {}
    imids = h5f.keys()
    results = {}
    cnt = 0
    r_acc_100 = 0
    r_acc_50 = 0

    tp_total = 0
    gt_total = 0
    median = []
    total = 0
    retr_meta = zl.load('output/pkl/vg_retr_meta.pkl')
    for k in xrange(len(retr_meta['rlp_labels'])):
        total += retr_meta['counts'][k]
        if k > 1000:
            print total / 1000.
            exit(0)
            break
        continue
        cnt += 1
        rlp_label = retr_meta['rlp_labels'][k]
        gt_files = retr_meta['files'][k]
        # print gt_files
        # exit(0)
        # for f in gt_files:
        # impath= zl.imid2path(m,f)
        # print impath
        # im= cv2.imread(data_root+impath)
        # cv2.imshow('im',im)
        # cv2.waitKey(0)
        results = {}
        zl.tick()
        ranks = []
        for imid in imids:
            labels = h5f[imid]['labels'] - 1
            rlp_confs = h5f[imid]['confs']
            rlp_labels = rlp_map[labels]
            if rlp_labels.shape[0] == 0:
                results[imid] = 0.0
                continue
            indexor = np.arange(rlp_labels.shape[0])
            ind = indexor[np.all(rlp_labels == rlp_label, axis=1)]
            if ind.shape[0] == 0:
                results[imid] = 0.0
                continue
            confs = rlp_confs[ind]
            results[imid] = np.average(confs)

        results_sorted = zl.sort_dict_by_val(results)
        total_gt = len(gt_files) + 0.0
        gt_total += total_gt + 0.0
        tp_50 = 0.
        tp_100 = 0.
        found = False
        s_lbl = zl.idx2name_cls(m, rlp_label[0])
        p_lbl = zl.idx2name_pre(m, rlp_label[1])
        o_lbl = zl.idx2name_cls(m, rlp_label[2])
        lbl_str = '%s_%s_%s' % (s_lbl, p_lbl, o_lbl)

        delay = 0
        for i in xrange(len(results_sorted)):
            imid, v = results_sorted[i]
            impath = zl.imid2path(m, imid)
            if found and i >= 5:
                break
            # print gt_files
            cor = imid in gt_files
            if cor:
                if not found:
                    found = True
                    median.append(i)
                if i < 5:
                    tp_100 += 1
                    tp_total += 1
                    if i < 50: tp_50 += 1
            # if True:
            # cor_or_not = str(cor)
            # if cor :delay=0
            # if delay ==0:
            # im = cv2.imread(data_root+impath)
            # cv2.putText(im, cor_or_not, (50, 50), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 1)
            # cv2.putText(im, lbl_str, (50, 80), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 1)
            # cv2.putText(im, str(i), (50, 100), cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 1)
            # cv2.imshow('im',im)
            # c = cv2.waitKey(delay)&0xFF
            # if c ==27:
            # exit(0)
            # if c == ord('s'):
            # delay = 1-delay

            # if c == ord('c'):
            # delay = 1

        r_50 = tp_50 / 5  #total_gt
        r_100 = tp_100 / 5  #total_gt
        r_acc_50 += r_50
        r_acc_100 += r_100
        med = np.median(median)
        print '%d %f %f %f %f %d %f' % (cnt, r_50, r_100, r_acc_50 / cnt,
                                        r_acc_100 / cnt, med, zl.tock())
def run_relation_visualization():
    h5f_ours = h5py.File(
        'output/vg_results/vg1_2_2016_result_all_100000.all.hdf5', 'r')
    m = h5py.File('/media/zawlin/ssd/Dropbox/proj/vg1_2_meta.h5')
    data_root = '/home/zawlin/g/py-faster-rcnn/data/vg1_2_2016/Data/test/'
    m = h5py.File('/home/zawlin/Dropbox/proj/vg1_2_meta.h5', 'r', 'core')
    thresh = 0.0
    filters = []
    rois = []
    images = {}
    imids = h5f_ours.keys()
    #random.shuffle(imids)
    rel_types = {}
    rel_types['p'] = []
    rel_types['s'] = []
    rel_types['v'] = []
    rel_types['c'] = []
    for k in m['meta/pre/name2idx'].keys():
        idx = int(str(m['meta/pre/name2idx/' + k][...]))
        r_type = m['meta/pre/name2idx/' + k].attrs['type']
        rel_types[r_type].append(idx)
    for imid in imids:
        obj_boxes_ours = h5f_ours[imid + '/obj_boxes'][...]
        sub_boxes_ours = h5f_ours[imid + '/sub_boxes'][...]
        rlp_labels_ours = h5f_ours[imid + '/rlp_labels'][...].astype(np.int32)
        rlp_confs_ours = h5f_ours[imid + '/rlp_confs'][...]
        sorted_ind = np.argsort(rlp_confs_ours)[::-1]
        rlp_confs_ours = rlp_confs_ours[sorted_ind]
        obj_boxes_ours = obj_boxes_ours[sorted_ind]
        sub_boxes_ours = sub_boxes_ours[sorted_ind]
        rlp_labels_ours = rlp_labels_ours[sorted_ind]
        if rlp_confs_ours.shape[0] <= 0: continue

        ours_indices = {}
        ours_indices['p'] = []
        ours_indices['s'] = []
        ours_indices['v'] = []
        ours_indices['c'] = []
        #map indices to type
        for i in xrange(rlp_confs_ours.shape[0]):
            pre_label = rlp_labels_ours[i][1]
            if pre_label in rel_types['p']: ours_indices['p'].append(i)
            if pre_label in rel_types['s']: ours_indices['s'].append(i)
            if pre_label in rel_types['v']: ours_indices['v'].append(i)
            if pre_label in rel_types['c']: ours_indices['c'].append(i)

        im_path = zl.imid2path(m, imid)
        im_orig = cv2.imread(data_root + im_path)
        cv2.namedWindow('ctrl')
        cv2.destroyWindow('ctrl')
        cv2.namedWindow('ctrl')

        ours_p_len = len(ours_indices['p']) - 1
        ours_c_len = len(ours_indices['c']) - 1
        ours_v_len = len(ours_indices['v']) - 1
        ours_s_len = len(ours_indices['s']) - 1
        ours_len = len(rlp_labels_ours) - 1

        if ours_len > 0:
            cv2.createTrackbar('idx_ours', 'ctrl', 0, ours_len, nothing)
        if ours_p_len > 0:
            cv2.createTrackbar('idx_ours_p', 'ctrl', 0, ours_p_len, nothing)
        if ours_c_len > 0:
            cv2.createTrackbar('idx_ours_c', 'ctrl', 0, ours_c_len, nothing)
        if ours_v_len > 0:
            cv2.createTrackbar('idx_ours_v', 'ctrl', 0, ours_v_len, nothing)
        if ours_s_len > 0:
            cv2.createTrackbar('idx_ours_s', 'ctrl', 0, ours_s_len, nothing)

        cnt = 0
        while True:
            cv2.imshow('orig', im_orig)
            if ours_len >= 0:
                idx_ours = cv2.getTrackbarPos('idx_ours', 'ctrl')
                im_ours = im_orig.copy()
                s_box_ours = sub_boxes_ours[idx_ours]
                o_box_ours = obj_boxes_ours[idx_ours]
                conf = rlp_confs_ours[idx_ours]
                sub_label_ours = m['meta/cls/idx2name/' +
                                   str(rlp_labels_ours[idx_ours][0])][...]
                obj_label_ours = m['meta/cls/idx2name/' +
                                   str(rlp_labels_ours[idx_ours][2])][...]
                pre_label_ours = m['meta/pre/idx2name/' +
                                   str(rlp_labels_ours[idx_ours][1])][...]
                r_label_ours = '%s %s %s' % (sub_label_ours, pre_label_ours,
                                             obj_label_ours)
                cv2.putText(im_ours, r_label_ours, (50, 50),
                            cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)
                cv2.rectangle(im_ours, (s_box_ours[0], s_box_ours[1]),
                              (s_box_ours[2], s_box_ours[3]), (0, 200, 0), 2)
                cv2.rectangle(im_ours, (o_box_ours[0], o_box_ours[1]),
                              (o_box_ours[2], o_box_ours[3]), (0, 0, 200), 2)
                cv2.imshow('im_ours', im_ours)

            if ours_p_len >= 0:
                idx_ours_p = cv2.getTrackbarPos('idx_ours_p', 'ctrl')
                idx_ours = ours_indices['p'][idx_ours_p]
                im_ours_p = im_orig.copy()
                s_box_ours = sub_boxes_ours[idx_ours]
                o_box_ours = obj_boxes_ours[idx_ours]
                conf = rlp_confs_ours[idx_ours]
                sub_label_ours = m['meta/cls/idx2name/' +
                                   str(rlp_labels_ours[idx_ours][0])][...]
                obj_label_ours = m['meta/cls/idx2name/' +
                                   str(rlp_labels_ours[idx_ours][2])][...]
                pre_label_ours = m['meta/pre/idx2name/' +
                                   str(rlp_labels_ours[idx_ours][1])][...]
                r_label_ours = '%s %s %s' % (sub_label_ours, pre_label_ours,
                                             obj_label_ours)
                cv2.putText(im_ours_p, r_label_ours, (50, 50),
                            cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)
                cv2.rectangle(im_ours_p, (s_box_ours[0], s_box_ours[1]),
                              (s_box_ours[2], s_box_ours[3]), (0, 200, 0), 2)
                cv2.rectangle(im_ours_p, (o_box_ours[0], o_box_ours[1]),
                              (o_box_ours[2], o_box_ours[3]), (0, 0, 200), 2)
                cv2.imshow('im_ours_p', im_ours_p)

            if ours_v_len >= 0:
                idx_ours_v = cv2.getTrackbarPos('idx_ours_v', 'ctrl')
                idx_ours = ours_indices['v'][idx_ours_v]
                im_ours_v = im_orig.copy()
                s_box_ours = sub_boxes_ours[idx_ours]
                o_box_ours = obj_boxes_ours[idx_ours]
                conf = rlp_confs_ours[idx_ours]
                sub_label_ours = m['meta/cls/idx2name/' +
                                   str(rlp_labels_ours[idx_ours][0])][...]
                obj_label_ours = m['meta/cls/idx2name/' +
                                   str(rlp_labels_ours[idx_ours][2])][...]
                pre_label_ours = m['meta/pre/idx2name/' +
                                   str(rlp_labels_ours[idx_ours][1])][...]
                r_label_ours = '%s %s %s' % (sub_label_ours, pre_label_ours,
                                             obj_label_ours)
                cv2.putText(im_ours_v, r_label_ours, (50, 50),
                            cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)
                cv2.rectangle(im_ours_v, (s_box_ours[0], s_box_ours[1]),
                              (s_box_ours[2], s_box_ours[3]), (0, 200, 0), 2)
                cv2.rectangle(im_ours_v, (o_box_ours[0], o_box_ours[1]),
                              (o_box_ours[2], o_box_ours[3]), (0, 0, 200), 2)
                cv2.imshow('im_ours_v', im_ours_v)

            if ours_c_len >= 0:
                idx_ours_c = cv2.getTrackbarPos('idx_ours_c', 'ctrl')
                idx_ours = ours_indices['c'][idx_ours_c]
                im_ours_c = im_orig.copy()
                s_box_ours = sub_boxes_ours[idx_ours]
                o_box_ours = obj_boxes_ours[idx_ours]
                conf = rlp_confs_ours[idx_ours]
                sub_label_ours = m['meta/cls/idx2name/' +
                                   str(rlp_labels_ours[idx_ours][0])][...]
                obj_label_ours = m['meta/cls/idx2name/' +
                                   str(rlp_labels_ours[idx_ours][2])][...]
                pre_label_ours = m['meta/pre/idx2name/' +
                                   str(rlp_labels_ours[idx_ours][1])][...]
                r_label_ours = '%s %s %s' % (sub_label_ours, pre_label_ours,
                                             obj_label_ours)
                cv2.putText(im_ours_c, r_label_ours, (50, 50),
                            cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)
                cv2.rectangle(im_ours_c, (s_box_ours[0], s_box_ours[1]),
                              (s_box_ours[2], s_box_ours[3]), (0, 200, 0), 2)
                cv2.rectangle(im_ours_c, (o_box_ours[0], o_box_ours[1]),
                              (o_box_ours[2], o_box_ours[3]), (0, 0, 200), 2)
                cv2.imshow('im_ours_c', im_ours_c)

            if ours_s_len >= 0:
                idx_ours_s = cv2.getTrackbarPos('idx_ours_s', 'ctrl')
                idx_ours = ours_indices['s'][idx_ours_s]
                im_ours_s = im_orig.copy()
                s_box_ours = sub_boxes_ours[idx_ours]
                o_box_ours = obj_boxes_ours[idx_ours]
                conf = rlp_confs_ours[idx_ours]
                sub_label_ours = m['meta/cls/idx2name/' +
                                   str(rlp_labels_ours[idx_ours][0])][...]
                obj_label_ours = m['meta/cls/idx2name/' +
                                   str(rlp_labels_ours[idx_ours][2])][...]
                pre_label_ours = m['meta/pre/idx2name/' +
                                   str(rlp_labels_ours[idx_ours][1])][...]
                r_label_ours = '%s %s %s' % (sub_label_ours, pre_label_ours,
                                             obj_label_ours)
                cv2.putText(im_ours_s, r_label_ours, (50, 50),
                            cv2.FONT_HERSHEY_COMPLEX, 1, (0, 0, 255), 2)
                cv2.rectangle(im_ours_s, (s_box_ours[0], s_box_ours[1]),
                              (s_box_ours[2], s_box_ours[3]), (0, 200, 0), 2)
                cv2.rectangle(im_ours_s, (o_box_ours[0], o_box_ours[1]),
                              (o_box_ours[2], o_box_ours[3]), (0, 0, 200), 2)
                cv2.imshow('im_ours_s', im_ours_s)

            c = cv2.waitKey(1) & 0xFF
            if c == ord(' '):
                break
            if c == ord('s'):
                im_folder = 'output/results/examples/' + imid
                if not os.path.exists('output/results/examples/' + imid):
                    os.makedirs('output/results/examples/' + imid)
                if not os.path.exists('output/results/examples/' + imid +
                                      '/orig_' + imid + '.jpg'):
                    cv2.imwrite(
                        'output/results/examples/' + imid + '/orig_' + imid +
                        '.jpg', im_orig)

                if ours_v_len >= 0:
                    cv2.imwrite(
                        'output/results/examples/' + imid + '/ours_v_' + imid +
                        '_' + str(idx_ours) + '.jpg', im_ours_v)
                if ours_p_len >= 0:
                    cv2.imwrite(
                        'output/results/examples/' + imid + '/ours_p_' + imid +
                        '_' + str(idx_ours) + '.jpg', im_ours_p)
                if ours_c_len >= 0:
                    cv2.imwrite(
                        'output/results/examples/' + imid + '/ours_c_' + imid +
                        '_' + str(idx_ours) + '.jpg', im_ours_c)
                if ours_s_len >= 0:
                    cv2.imwrite(
                        'output/results/examples/' + imid + '/ours_s_' + imid +
                        '_' + str(idx_ours) + '.jpg', im_ours_s)
                cnt += 1
            if c == 27:
                exit(0)
Example #4
0
def run_retrieval():
    h5f = h5py.File('output/vg_results/vg1_2_2016_result_all_100000.all.hdf5')
    #h5f = h5py.file('output/results/lu_method_results.hdf5')
    data_root = '/home/zawlin/g/py-faster-rcnn/data/vg1_2_2016/Data/test/'
    m = h5py.File('/home/zawlin/Dropbox/proj/vg1_2_meta.h5', 'r', 'core')
    thresh = 0.0
    filters = []
    rois = []
    images = {}
    imids = h5f.keys()
    results = {}
    cnt = 0
    # pre = 'teddy bear_sit on_blanket'
    pre = 'cloth_next to_suitcase'
    # pre = 'paw_in front of_cat'
    # pre = 'racket_hold by_player'
    sub_lbl = pre.split('_')[0]
    pre_lbl = pre.split('_')[1]
    obj_lbl = pre.split('_')[2]
    sub_idx = zl.name2idx_cls(m, sub_lbl)
    pre_idx = zl.name2idx_pre(m, pre_lbl)
    obj_idx = zl.name2idx_cls(m, obj_lbl)
    rlp_label = np.array([sub_idx, pre_idx, obj_idx]).astype(np.int16)
    results = {}

    for imid in imids:
        if cnt % 100 == 0:
            print cnt, zl.tock()
            zl.tick()
        cnt += 1
        rlp_labels = h5f[imid + '/rlp_labels'][...]
        rlp_confs = h5f[imid + '/rlp_confs'][...]
        if rlp_confs.shape[0] == 0:
            results[imid] = 0.0
            continue
        zl.tick()
        indexor = np.arange(rlp_labels.shape[0])
        ind = indexor[np.all(rlp_labels == rlp_label, axis=1)]
        if ind.shape[0] == 0:
            results[imid] = 0.0
            continue
        confs = rlp_confs[ind]
        # print confs
        # print np.average(confs)
        results[imid] = np.average(confs)
    results_sorted = zl.sort_dict_by_val(results)
    example_folder = 'output/examples_retr_vg/%s/' % pre
    zl.make_dirs(example_folder)
    cnt = 0
    for imid, v in results_sorted[:20]:
        sub_boxes = h5f[imid + '/sub_boxes'][...]
        obj_boxes = h5f[imid + '/obj_boxes'][...]
        rlp_labels = h5f[imid + '/rlp_labels'][...]
        rlp_confs = h5f[imid + '/rlp_confs'][...]

        indexor = np.arange(rlp_labels.shape[0])
        ind = indexor[np.all(rlp_labels == rlp_label, axis=1)]
        if ind.shape[0] != 0:
            sub_boxes = sub_boxes[ind]
            obj_boxes = obj_boxes[ind]
            sb = sub_boxes[0]
            ob = obj_boxes[0]
            im = cv2.imread(data_root + zl.imid2path(m, imid))
            cv2.rectangle(im, (sb[0], sb[1]), (sb[2], sb[3]), (0, 200, 0), 1)
            cv2.rectangle(im, (ob[0], ob[1]), (ob[2], ob[3]), (0, 0, 200), 1)
            cv2.imwrite(example_folder + str(cnt) + '_%s.jpg' % imid, im)
            #cv2.imshow('im',im)
            cnt += 1
Example #5
0
def run_retrieval_vp():
    h5f = h5py.File('output/precalc/vg1_2_vp2016_test_new.hdf5')
    # print h5f[h5f.keys()[0]].keys()
    # exit(0)
    #h5f = h5py.file('output/results/lu_method_results.hdf5')
    data_root = '/home/zawlin/g/py-faster-rcnn/data/vg1_2_2016/Data/test/'
    m = h5py.File('/home/zawlin/Dropbox/proj/vg1_2_meta.h5', 'r', 'core')
    m_vp = h5py.File('/home/zawlin/Dropbox/proj/vg1_2_vp_meta.h5', 'r', 'core')
    thresh = 0.0
    filters = []
    rois = []
    images = {}
    imids = h5f.keys()
    results = {}
    cnt = 0
    pre = 'teddy bear_sit on_blanket'
    # pre = 'paw_in front of_cat'
    # pre = 'racket_hold by_player'
    r_idx = zl.name2idx_tri(m_vp, pre)
    # sub_lbl = pre.split('_')[0]
    # pre_lbl = pre.split('_')[1]
    # obj_lbl = pre.split('_')[2]
    # sub_idx = zl.name2idx_cls(m,sub_lbl)
    # pre_idx = zl.name2idx_pre(m,pre_lbl)
    # obj_idx = zl.name2idx_cls(m,obj_lbl)
    # rlp_label = np.array([sub_idx,pre_idx,obj_idx]).astype(np.int16)
    results = {}

    for imid in imids:
        if cnt % 100 == 0:
            print cnt, zl.tock()
            zl.tick()
        cnt += 1
        # rlp_labels = h5f[imid+'/labels'][...]
        rlp_confs = h5f[imid + '/confs'][:, r_idx]
        ind = np.argsort(rlp_confs)[::-1]
        rlp_confs = rlp_confs[ind[:5]]
        results[imid] = np.average(rlp_confs)
        if rlp_confs.shape[0] == 0:
            results[imid] = 0.0
            continue
        zl.tick()
        indexor = np.arange(rlp_labels.shape[0])
        # ind = indexor[np.all(rlp_labels==rlp_label,axis=1)]
        ind = np.where(rlp_labels == r_idx)[0]
        if ind.shape[0] == 0:
            results[imid] = 0.0
            continue
        confs = rlp_confs[ind]
        results[imid] = np.average(confs)
    results_sorted = zl.sort_dict_by_val(results)
    example_folder = 'output/examples_retr_vg_vp/%s/' % pre
    zl.make_dirs(example_folder)
    cnt = 0
    for imid, v in results_sorted[:200]:
        boxes = h5f[imid + '/boxes'][...]
        rlp_labels = h5f[imid + '/labels'][...]
        rlp_confs = h5f[imid + '/confs'][...]

        # indexor = np.arange(rlp_labels.shape[0])
        # ind = indexor[np.all(rlp_labels==rlp_label,axis=1)]
        ind = np.where(rlp_labels == r_idx)[0]
        if ind.shape[0] != 0:
            boxes = boxes[ind]
            sb = boxes[0]
            # ob = obj_boxes[0]
            im = cv2.imread(data_root + zl.imid2path(m, imid))
            cv2.rectangle(im, (sb[0], sb[1]), (sb[2], sb[3]), (0, 200, 0), 1)
            # cv2.rectangle(im,(ob[0],ob[1]),(ob[2],ob[3]),(0,0,200),1)
            cv2.imwrite(example_folder + str(cnt) + '_%s.jpg' % imid, im)
            #cv2.imshow('im',im)
            cnt += 1
Example #6
0
def run_retrieval_vp_all():
    h5f = h5py.File('output/precalc/vg1_2_vp2016_test_new.hdf5', 'r')
    # print h5f[h5f.keys()[0]].keys()
    # exit(0)
    #h5f = h5py.file('output/results/lu_method_results.hdf5')
    img_set_file = 'data/vg1_2_2016/ImageSets/test.txt'
    imlist = {
        line.strip().split(' ')[1]: line.strip().split(' ')[0]
        for line in open(img_set_file)
    }
    data_root = '/home/zawlin/g/py-faster-rcnn/data/vg1_2_2016/Data/test/'
    m = h5py.File('/home/zawlin/Dropbox/proj/vg1_2_meta.h5', 'r', 'core')
    m_vp = h5py.File('/home/zawlin/Dropbox/proj/vg1_2_vp_meta.h5', 'r', 'core')
    thresh = 0.0
    filters = []
    rois = []
    images = {}
    imids = h5f.keys()
    results = {}
    cnt = 0
    # pre = 'teddy bear_sit on_blanket'
    pre = 'paw_in front of_cat'
    # pre = 'racket_hold by_player'
    r_idx = zl.name2idx_tri(m_vp, pre)
    # sub_lbl = pre.split('_')[0]
    # pre_lbl = pre.split('_')[1]
    # obj_lbl = pre.split('_')[2]
    # sub_idx = zl.name2idx_cls(m,sub_lbl)
    # pre_idx = zl.name2idx_pre(m,pre_lbl)
    # obj_idx = zl.name2idx_cls(m,obj_lbl)
    # rlp_label = np.array([sub_idx,pre_idx,obj_idx]).astype(np.int16)
    results = {}

    for imid in imids:
        # if cnt>2000:
        # break
        if cnt % 100 == 0:
            print cnt, zl.tock()
            zl.tick()
        cnt += 1
        # rlp_labels = h5f[imid+'/labels'][...]
        if imid + '/scores' not in h5f:
            print imid
            continue
            # exit(0)
        rlp_confs = h5f[imid + '/scores'][:, r_idx]
        # print np.argmax(rlp_confs)
        # exit(0)
        # ind = np.argsort(rlp_confs)[::-1]
        rlp_confs = rlp_confs[np.argmax(rlp_confs)]
        # print rlp_confs
        results[imid] = np.average(rlp_confs)
        # print np.average(rlp_confs)
    results_sorted = zl.sort_dict_by_val(results)
    example_folder = 'output/examples_retr_vg_vp/%s/' % pre
    zl.make_dirs(example_folder)
    cnt = 0
    for imid, v in results_sorted[:200]:
        if imid + '/scores' not in h5f:
            continue
        #rlp_labels = h5f[imid+'/labels'][...]
        impath = imlist[imid]
        imid_orig = impath.split('/')[1].replace('.jpg', '')
        rlp_confs = h5f[imid + '/scores'][:, r_idx]
        ind = np.argsort(rlp_confs)[::-1]
        rlp_confs = rlp_confs[ind[:1]]
        boxes = h5f[imid + '/boxes'][...][ind, :]
        # indexor = np.arange(rlp_labels.shape[0])
        # ind = indexor[np.all(rlp_labels==rlp_label,axis=1)]
        #boxes = boxes[ind]
        sb = boxes[0]
        # ob = obj_boxes[0]
        im = cv2.imread(data_root + zl.imid2path(m, imid_orig))
        cv2.rectangle(im, (sb[0], sb[1]), (sb[2], sb[3]), (0, 200, 0), 1)
        # cv2.rectangle(im,(ob[0],ob[1]),(ob[2],ob[3]),(0,0,200),1)
        cv2.imwrite(example_folder + str(cnt) + '_%s.jpg' % imid, im)
        #cv2.imshow('im',im)
        cnt += 1
def prep_pre(split_type):
    if split_type != 'train' and split_type != 'test':
        print 'error'
        exit(0)
    caffe.set_mode_gpu()
    caffe.set_device(0)

    m = h5py.File('/home/zawlin/Dropbox/proj/vg1_2_meta.h5', 'r', 'core')

    cfg.TEST.HAS_RPN = False
    net = caffe.Net(
        'models/vg1_2/vgg16/faster_rcnn_end2end/test_jointbox.prototxt',
        'output/models/vg1_2_vgg16_faster_rcnn_finetune_iter_145000.caffemodel',
        caffe.TEST)
    # net.name = os.path.splitext(os.path.basename(args.caffemodel))[0]
    h5path = 'output/precalc/vg1_2_2016_predicate_exp_%s.hdf5' % split_type

    h5f = h5py.File(h5path)
    cnt = 0
    for k in h5f.keys():
        if cnt % 1000 == 0:
            print cnt
        cnt += 1
        if 'sub_visual' not in h5f[k]:
            print k
    print len(h5f.keys())
    exit(0)
    root = 'data/vg1_2_2016/Data/%s/' % split_type
    _t = {'im_detect': Timer(), 'misc': Timer()}
    cnt = 0
    thresh = .01
    for imid in m['gt/%s' % split_type].keys():
        cnt += 1
        impath = zl.imid2path(m, imid)
        fpath = os.path.join(root, impath)
        im = cv2.imread(fpath)
        if im == None:
            print fpath
        if cnt % 100 == 0:
            print cnt
        fpath = os.path.join(root, impath)
        im = cv2.imread(fpath)
        if im == None:
            print fpath
        gt_sub_boxes = m['gt/%s/%s/sub_boxes' % (split_type, imid)][...]
        gt_obj_boxes = m['gt/%s/%s/obj_boxes' % (split_type, imid)][...]
        gt_rlp_labels = m['gt/%s/%s/rlp_labels' % (split_type, imid)][...]

        sub_boxes = []
        obj_boxes = []
        joint_boxes = []
        boxes_batch = []
        b_type = {}
        b_idx = 0
        sub_visual = []
        obj_visual = []
        joint_visual = []
        pre_label = []
        sub_cls = []
        obj_cls = []
        for i in xrange(gt_sub_boxes.shape[0]):
            gt_sub_box = gt_sub_boxes[i][...]
            gt_obj_box = gt_obj_boxes[i][...]
            gt_rlp_label = gt_rlp_labels[i][...]

            pre_idx = gt_rlp_label[1]
            sub_cls_idx = gt_rlp_label[0]
            obj_cls_idx = gt_rlp_label[2]

            sub_cls.append(sub_cls_idx)
            obj_cls.append(obj_cls_idx)
            pre_label.append(pre_idx)

            #print sub_lbl,predicate,obj_lbl
            joint_bbox = [
                min(gt_sub_box[0], gt_obj_box[0]),
                min(gt_sub_box[1], gt_obj_box[1]),
                max(gt_sub_box[2], gt_obj_box[2]),
                max(gt_sub_box[3], gt_obj_box[3])
            ]

            joint_boxes.append(joint_bbox)
            sub_boxes.append(gt_sub_box)
            obj_boxes.append(gt_obj_box)
            # cv2.rectangle(im,(joint_bbox[0],joint_bbox[1]),(joint_bbox[2],joint_bbox[3]),(255,255,255),4)
            # cv2.rectangle(im,(sub_bbox[0],sub_bbox[1]),(sub_bbox[2],sub_bbox[3]),(0,0,255),2)
            # cv2.rectangle(im,(obj_bbox[0],obj_bbox[1]),(obj_bbox[2],obj_bbox[3]),(255,0,0),2)

        for i in xrange(len(sub_boxes)):
            boxes_batch.append(sub_boxes[i])
            b_type[b_idx] = 's'
            b_idx += 1
        for i in xrange(len(obj_boxes)):
            boxes_batch.append(obj_boxes[i])
            b_type[b_idx] = 'o'
            b_idx += 1
        for i in xrange(len(joint_boxes)):
            boxes_batch.append(joint_boxes[i])
            b_type[b_idx] = 'j'
            b_idx += 1
        box_proposals = None
        _t['im_detect'].tic()
        score_raw, scores, fc7, boxes = im_detect(net, im,
                                                  np.array(boxes_batch))

        for i in xrange(scores.shape[0]):
            s_idx = np.argmax(scores[i, 1:]) + 1
            cls_box = None
            cls_box = boxes[i, s_idx * 4:(s_idx + 1) * 4]
            if b_type[i] == 's':
                sub_visual.append(fc7[i])
            if b_type[i] == 'o':
                obj_visual.append(fc7[i])
            if b_type[i] == 'j':
                joint_visual.append(fc7[i])
            # cls_name = str(m['meta/cls/idx2name/' + str(s_idx)][...])
            # if b_type[i] == 's':
            # print str(m['meta/pre/idx2name/'+str(pre_label[i])][...])
            # cv2.rectangle(im,(cls_box[0],cls_box[1]),(cls_box[2],cls_box[3]),(255,0,0),2)
        # cv2.imshow('im',im)
        _t['im_detect'].toc()

        _t['misc'].tic()
        sub_visual = np.array(sub_visual).astype(np.float16)
        obj_visual = np.array(obj_visual).astype(np.float16)
        joint_visual = np.array(joint_visual).astype(np.float16)
        pre_label = np.array(pre_label).astype(np.int32)
        sub_boxes = np.array(sub_boxes).astype(np.int32)
        obj_boxes = np.array(obj_boxes).astype(np.int32)
        sub_cls = np.array(sub_cls).astype(np.int32)
        obj_cls = np.array(obj_cls).astype(np.int32)

        h5f.create_dataset(imid + '/sub_visual',
                           dtype='float16',
                           data=sub_visual)
        h5f.create_dataset(imid + '/obj_visual',
                           dtype='float16',
                           data=obj_visual)
        h5f.create_dataset(imid + '/joint_visual',
                           dtype='float16',
                           data=joint_visual)
        h5f.create_dataset(imid + '/pre_label',
                           dtype='float16',
                           data=pre_label)
        h5f.create_dataset(imid + '/sub_boxes',
                           dtype='float16',
                           data=sub_boxes)
        h5f.create_dataset(imid + '/obj_boxes',
                           dtype='float16',
                           data=obj_boxes)
        h5f.create_dataset(imid + '/sub_cls', dtype='float16', data=sub_cls)
        h5f.create_dataset(imid + '/obj_cls', dtype='float16', data=obj_cls)
        _t['misc'].toc()
        # rpn_rois = net.blobs['rois'].data
        # pool5 = net.blobs['pool5'].data
        # _t['misc'].tic()
        # cnt += 1
        print 'im_detect: {:d} {:.3f}s {:.3f}s' \
            .format(cnt, _t['im_detect'].average_time,
                    _t['misc'].average_time)
Example #8
0
def run_test_save_result():
    caffe.set_mode_gpu()
    caffe.set_device(0)
    m = h5py.File('/home/zawlin/Dropbox/proj/vg1_2_meta.h5', 'r', 'core')
    net = caffe.Net('models/vg1_2/vgg16/faster_rcnn_end2end/test.prototxt',
                    'output/models/vg1_2_vgg16_faster_rcnn_finetune_iter_120000.caffemodel',caffe.TEST)
    h5path = 'output/precalc/vg1_2_2016_test.hdf5'
    h5f = h5py.File(h5path)
    root = 'data/vg1_2_2016/Data/test/'
    _t = {'im_detect': Timer(), 'misc': Timer()}
    cnt = 0
    thresh = .25
    for imid in m['gt/test'].keys():
            cnt += 1

            if imid in h5f:continue
            impath = zl.imid2path(m,imid)
            fpath = os.path.join(root, impath)
            if not os.path.exists(fpath):
                zl.copy_file('data/vg1_2_2016/Data/train/'+impath,fpath)
            # print fpath
            # exit(0)
            im = cv2.imread(fpath)
            if im == None:
                print fpath
            box_proposals = None
            _t['im_detect'].tic()
            score_raw, scores, fc7, boxes = im_detect(net, im, box_proposals)
            _t['im_detect'].toc()
            res_locations = []
            res_visuals = []
            res_classemes = []
            res_cls_confs = []
            _t['misc'].tic()
            for j in xrange(1, 201):
                inds = np.where(scores[:, j] > 0.01)[0]
                cls_scores = scores[inds, j]
                cls_boxes = boxes[inds, j * 4:(j + 1) * 4]
                cls_dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])) \
                    .astype(np.float32, copy=False)
                res_loc = cls_boxes
                res_vis = fc7[inds]
                res_classeme = scores[inds]
                res_cls_conf = np.column_stack((np.zeros(cls_scores.shape[0]) + j, cls_scores))
                keep = nms(cls_dets, .2,force_cpu=True)  # nms threshold
                cls_dets = cls_dets[keep, :]
                res_loc = res_loc[keep]
                res_vis = res_vis[keep]
                res_classeme = res_classeme[keep]
                res_cls_conf = res_cls_conf[keep]
                res_classemes.extend(res_classeme)
                res_visuals.extend(res_vis)
                res_locations.extend(res_loc)
                res_cls_confs.extend(res_cls_conf)
            inds = np.where(np.array(res_cls_confs)[:, 1] > thresh)[0]
            res_classemes = np.array(res_classemes)[inds]
            res_visuals = np.array(res_visuals)[inds]
            res_locations = np.array(res_locations)[inds]
            res_cls_confs = np.array(res_cls_confs)[inds]

            h5f.create_dataset(imid + '/classemes', dtype='float16', data=res_classemes.astype(np.float16))
            h5f.create_dataset(imid + '/visuals', dtype='float16', data=res_visuals.astype(np.float16))
            h5f.create_dataset(imid + '/locations', dtype='short', data=res_locations.astype(np.short))
            h5f.create_dataset(imid + '/cls_confs', dtype='float16', data=res_cls_confs.astype(np.float16))

            _t['misc'].toc()

            print 'im_detect: {:d} {:.3f}s {:.3f}s' \
                .format(cnt, _t['im_detect'].average_time,
                        _t['misc'].average_time)