def __init__(self,memory_size=1000,memory_word_size=32): self.Gmemory = nx.DiGraph() self.StateAttributesDict={} self.memory_size = memory_size self.memory_word_size = memory_word_size self.gamma = 0.9 self.lr = 0.01 self._write_content_similarity = utils.CosineSimilarity(1,self.memory_word_size,name="write_content_similarity") self._TH = 0.99
def __init__(self, num_actions=4, num_node=10, memory_size=100, memory_word_size=100, name='ControllerCore'): #self.AbstractG = self._build_graph() #由于目前还没有构造抽象图 20200430 #所以用原图代替 self.memory_size = memory_size self.AbstractG = Memory.ExternalMemory(memory_size=self.memory_size) self._read_content_similarity = utils.CosineSimilarity( 1, word_size=memory_word_size, name="read_content_similarity") self.epsilon = 0.9 self.num_actions = num_actions self.aggregator_cls = MeanAggregator self.memory_word_size = memory_word_size self.aggregator = self.aggregator_cls(self.memory_word_size, self.memory_word_size, name="aggregator", concat=False)
def __init__(self, num_actions=4, num_node=10, memory_size=100, memory_word_size=32, name='ControllerCore'): # 外部存储的结构概览 self.memory_size = memory_size self.memory_word_size = memory_word_size # 构造抽象图,从Memory中重新实例化一个子图,作为抽象图 self.AbstractG = Memory.ExternalMemory(memory_size=self.memory_size) self.aggregator_cls = MeanAggregator self.aggregator = self.aggregator_cls(self.memory_word_size, self.memory_word_size, name="aggregator", concat=False) # 根据当前状态得到读取索引,用到相似度度量 self._read_content_similarity = utils.CosineSimilarity( 1, word_size=memory_word_size, name="read_content_similarity") # 策略输出 self.epsilon = 0.9 self.num_actions = num_actions self._optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
def __init__(self, memory_word_size,memory_size,name='MemWriter'): self._memory_word_size = memory_word_size self._write_content_similarity = utils.CosineSimilarity(1,memory_word_size,name="write_content_similarity") #应该把Gmemory继承过来做内部值,不然每个函数都要用一下 self._TH =0.999 #计算阈值,如果大于这个值新建节点(余弦距离的时候有正有负,所以暂时取正的)