def exp_real_with_1_comp(): # REAL data = np.load('data/real/SCEDC-1999-2019-24hrs.npy') data = data[:, 1:, :3] params = np.load('results/real-24hrs-1-gcomp.npz') da = utils.DataAdapter(init_data=data) mu = params['mu'] beta = params['beta'] kernel = GaussianMixtureDiffusionKernel(n_comp=1, layers=[10], C=1., beta=beta, SIGMA_SHIFT=.1, SIGMA_SCALE=.5, MU_SCALE=.01, Wss=params['Wss'], bss=params['bss'], Wphis=params['Wphis']) lam = HawkesLam(mu, kernel, maximum=1e+3) print("mu", mu) print("beta", beta) utils.plot_spatial_kernel( "results/learned-kernel-SCEDC-1999-2019-24hrs.pdf", kernel.gdks[0], S=[[-1., 1.], [-1., 1.]], grid_size=50) utils.spatial_intensity_on_map( "results/map-SCEDC-1999-2019-24hrs.html", da, lam, data, seq_ind=3000, t=8.0, # xlim=[-23.226, -22.621], # ylim=[-43.868, -43.050], # ngrid=200) xlim=da.xlim, ylim=da.ylim, ngrid=200)
def exp_real_with_2_comp(): # REAL data = np.load( '../Spatio-Temporal-Point-Process-Simulator/data/rescale.ambulance.perday.npy' ) data = data[:, 1:, :3] params = np.load( '../Spatio-Temporal-Point-Process-Simulator/data/rescale_ambulance_mle_gaussian_mixture_params.npz' ) da = utils.DataAdapter(init_data=data) mu = .1 # params['mu'] beta = params['beta'] kernel = GaussianMixtureDiffusionKernel(n_comp=1, layers=[5], C=1., beta=beta, SIGMA_SHIFT=.1, SIGMA_SCALE=.5, MU_SCALE=.01, Wss=params['Wss'], bss=params['bss'], Wphis=params['Wphis']) lam = HawkesLam(mu, kernel, maximum=1e+3) print("mu", mu) print("beta", beta) print(params['Wphis'].shape) pp = SpatialTemporalPointProcess(lam) # generate points points, sizes = pp.generate(T=[0., 10.], S=[[-1., 1.], [-1., 1.]], batch_size=100, verbose=True) results = da.restore(points) print(results) print(sizes) np.save('results/ambulance-simulation.npy', results)
print('[%s] Train cost:\t%f' % (arrow.now(), avg_train_cost), file=sys.stderr) print('[%s] Test cost:\t%f' % (arrow.now(), avg_test_cost), file=sys.stderr) if __name__ == "__main__": np.set_printoptions(suppress=True) # np.random.seed(1) # tf.set_random_seed(1) with tf.Session() as sess: # data preparation data = np.load("data/northcal.earthquake.perseason.npy") da = utils.DataAdapter(init_data=data, S=[[-1., 1.], [-1., 1.]], T=[0., 1.]) data = da.normalize(data)[:, 1:51, :] mask = data == 0. mask = mask.astype(float) data = data + mask print(data) # print(data.shape) # model configurations lstm_hidden_size = 10 # training configurations step_size = np.shape(data)[1] batch_size = 5 test_ratio = 0.3 epoches = 30
# save all training cost into numpy file. np.savetxt("results/robbery_mle_train_cost.txt", all_train_cost, delimiter=",") if __name__ == "__main__": # Unittest example S = [[-1., 1.], [-1., 1.]] T = [0., 10.] data = np.load( '../Spatio-Temporal-Point-Process-Simulator/data/rescale.ambulance.perday.npy' ) data = data[:320, 1:51, :] # remove the first element in each seqs, since t = 0 da = utils.DataAdapter(init_data=data, S=S, T=T) # data = np.load('../Spatio-Temporal-Point-Process-Simulator/data/northcal.earthquake.perseason.npy') # da = utils.DataAdapter(init_data=data) seqs = da.normalize(data) print(da) print(seqs.shape) # training model with tf.Session() as sess: batch_size = 32 epoches = 10 layers = [5] n_comp = 5 ppg = MLE_Hawkes_Generator(T=T, S=S,
np.savetxt("results/robbery_rl_train_cost.txt", all_train_cost, delimiter=",") if __name__ == "__main__": # Unittest example # np.random.seed(0) # tf.set_random_seed(1) data = np.load( '../Spatio-Temporal-Point-Process-Simulator/data/apd.robbery.permonth.npy' ) # data = np.load('../Spatio-Temporal-Point-Process-Simulator/data/northcal.earthquake.perseason.npy') da = utils.DataAdapter(init_data=data) seqs = da.normalize(data) seqs = seqs[:, 1:, :] # remove the first element in each seqs, since t = 0 print(da) print(seqs.shape) # training model with tf.Session() as sess: # model configuration batch_size = 10 epoches = 30 lr = 1e-3 T = [0., 10.] S = [[-1., 1.], [-1., 1.]] layers = [5] n_comp = 5