def train(**kwargs):
    opt._parse(kwargs)

    model = models.Key_CSVideoNet(opt.CR[0],opt.Height,opt.Width,1)
    #if t.cuda.device_count() > 1:
    #    model = t.nn.DataParallel(model,device_ids = [0,1,2,3])
    model.to(opt.device)

    train_data = UCF101(opt.train_data_root,train=True)
    val_data = UCF101(opt.train_data_root,train=False)
    train_dataloader = DataLoader(train_data,opt.batch_size,
                        shuffle=True,num_workers=opt.num_workers)
    val_dataloader = DataLoader(val_data,opt.batch_size,
                        shuffle=False,num_workers=opt.num_workers)
    
    criterion = t.nn.MSELoss()
    lr = opt.lr
    optimizer = t.optim.Adam(model.parameters(),
                           lr = lr,
                           weight_decay = opt.weight_decay)
    
    utils_eval = utils.Evaluation()
    loss_meter = meter.AverageValueMeter()
    previous_loss = 1e10

    for epoch in range(opt.max_epoch):
        loss_meter.reset()

        for ii,data in tqdm(enumerate(train_dataloader)):
            input = data[0].float().to(opt.device).squeeze(1)
            target = input
            input_ = input.view(input.size(0),input.size(1)*input.size(2),1)
            weight = key_bernoulli_weights.repeat(input.size(0),1,1).to(opt.device)
            data_i = t.bmm(weight,input_).view(input.size(0),int(opt.CR[0]*1024))

            optimizer.zero_grad()
            score = model(data_i)

            loss = criterion(score,target)
            loss.backward()
            optimizer.step()

            loss_meter.add(loss.item())
        if(epoch%10==0):
            print("loss value is:",loss_meter.value()[0])
            val_psnr_ave = val(model,val_dataloader)
            print("result on validation dataset is:",val_psnr_ave)

        if loss_meter.value()[0] > previous_loss:          
            lr = lr * opt.lr_decay
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr
    
        previous_loss = loss_meter.value()[0]

    model.save()
def val(model,dataloader):
    model.eval()
    utils_eval = utils.Evaluation()
    for ii, data in tqdm(enumerate(dataloader)):
        val_input = data[0].float().to(opt.device).squeeze(1)
        val_input_ = val_input.view(val_input.size(0),val_input.size(1)*val_input.size(2),1)
        weight = key_bernoulli_weights.repeat(val_input.size(0),1,1).to(opt.device)
        data_i = t.bmm(weight,val_input_).view(val_input.size(0),int(opt.CR[0]*1024))
        score = model(data_i).unsqueeze(1)
        utils_eval.add(score,val_input.unsqueeze(1).float())
    model.train()
    psnr_ave = utils_eval.psnr_value()
    return psnr_ave
def test(**kwargs):
    opt._parse(kwargs)
    model = models.Key_CSVideoNet(1, opt.Height, opt.Width, 1)
    if opt.load_model_path:
        model.load(opt.load_model_path)
        print("model load success!")
    #if t.cuda.device_count()>1:
    #    model = t.nn.DataParallel(model,device_ids=[0,1])
    model.to(opt.device)
    model.eval()

    videos = [
        os.path.join(opt.test_data_root, video)
        for video in os.listdir(opt.test_data_root)
    ]
    video_num = len(videos)

    for item in videos:
        ue = utils.Evaluation()
        uv = utils.Video(item, opt.save_test_root, 1, opt.overlap, opt.Height)
        frames = uv.frame_capture()
        input = uv.frame_unfold(frames).float()
        print(input.size())
        frames_num = input.size(0)
        block_num_h = input.size(1)
        block_num_w = input.size(2)
        output_ = t.zeros(frames_num, block_num_h, block_num_w, opt.Height,
                          opt.Width)
        input_ = input.view(frames_num, block_num_h * block_num_w,
                            opt.Height * opt.Width).unsqueeze(3).to(opt.device)
        for i in range(frames_num):
            weight = key_bernoulli_weights.repeat(input_.size(1), 1,
                                                  1).to(opt.device)
            #print(weight.size())
            #print(input_.size())
            input_t = input_[i] / 255.0
            data_i = t.bmm(weight, input_t).view(input_.size(1), 1024)
            output = model(data_i)
            ue.add(
                output.unsqueeze_(0),
                input_t.view(input_.size(1), opt.Height,
                             opt.Width).unsqueeze_(0))
            output_[i] = (output.view(block_num_h, block_num_w, opt.Height,
                                      opt.Width)) * (255.0 / t.max(output))
        frames_output = uv.frame_fold(output_)
        uv.generate_video(frames_output)
        print("the average PSNR is", ue.psnr_value())
    '''
Example #4
0
def val(model, dataloader):
    model.eval()
    utils_eval = utils.Evaluation()
    for ii, data in tqdm(enumerate(dataloader)):
        input = data
        target = t.zeros(data[0].size(0), opt.seqLength, 32, 32).to(opt.device)
        nonkey_m = t.zeros(input[0].size(0), opt.seqLength - 1,
                           int(1024 * opt.CR[1])).to(opt.device)
        for i in range(opt.seqLength):
            target[:, i, :, :] = data[i].float().to(opt.device).squeeze(1)
        key_weight = key_bernoulli_weights.repeat(input[0].size(0), 1,
                                                  1).to(opt.device)
        non_key_weight = non_key_bernoulli_weights.repeat(
            input[1].size(0), 1, 1).to(opt.device)
        key_m = t.bmm(
            key_weight, input[0].float().to(opt.device).view(
                input[0].size(0), 1024, 1)).view(input[0].size(0),
                                                 int(1024 * opt.CR[0]))
        nonkey_m[:, 0, :] = t.bmm(
            non_key_weight, input[1].view(input[1].size(0), 1024,
                                          1).float().to(opt.device)).view(
                                              input[1].size(0),
                                              int(1024 * opt.CR[1]))
        #nonkey_m[:,1,:] = t.bmm(non_key_weight,input[2].view(input[2].size(0),1024,1).float().to(opt.device)).view(input[2].size(0),int(1024*opt.CR[1]))
        #nonkey_m[:,2,:] = t.bmm(non_key_weight,input[3].view(opt.batch_size,1024,1).float().to(opt.device)).view(opt.batch_size,int(1024*opt.CR[1]))
        #nonkey_m[:,3,:] = t.bmm(non_key_weight,input[4].view(opt.batch_size,1024,1).float().to(opt.device)).view(opt.batch_size,int(1024*opt.CR[1]))
        #nonkey_m[:,4,:] = t.bmm(non_key_weight,input[5].view(opt.batch_size,1024,1).float().to(opt.device)).view(opt.batch_size,int(1024*opt.CR[1]))
        #nonkey_m[:,5,:] = t.bmm(non_key_weight,input[6].view(opt.batch_size,1024,1).float().to(opt.device)).view(opt.batch_size,int(1024*opt.CR[1]))
        #nonkey_m[:,6,:] = t.bmm(non_key_weight,input[7].view(opt.batch_size,1024,1).float().to(opt.device)).view(opt.batch_size,int(1024*opt.CR[1]))
        #nonkey_m[:,7,:] = t.bmm(non_key_weight,input[8].view(opt.batch_size,1024,1).float().to(opt.device)).view(opt.batch_size,int(1024*opt.CR[1]))
        #nonkey_m[:,8,:] = t.bmm(non_key_weight,input[9].view(opt.batch_size,1024,1).float().to(opt.device)).view(opt.batch_size,int(1024*opt.CR[1]))
        score = model(key_m, nonkey_m)
        utils_eval.add(score, target)

    model.train()
    psnr_ave = utils_eval.psnr_value()
    return psnr_ave
            inputs=X_one_hot,
            dtype=tf.float32,
            sequence_length=Sequences)
        outputs = tf.concat(values=outputs, axis=2)

model = tf.layers.dense(outputs, modelconfig.output_size, activation=None)
cost = tf.reduce_mean(
    tf.nn.sparse_softmax_cross_entropy_with_logits(logits=model, labels=Y))
prediction = tf.argmax(model, axis=2)

optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)

sess = tf.Session()
sess.run(tf.global_variables_initializer())

eval = utils.Evaluation(type, modelconfig.epoch, 25)

print('\n------------ Training ------------ ')
last_time = time.time()
for epoch in range(modelconfig.epoch):

    _, loss = sess.run([optimizer, cost],
                       feed_dict={
                           X: input_batch,
                           Y: target_batch,
                           Sequences: seq_lens,
                           keep_prob: 0.8
                       })
    if epoch % 25 == 24:
        result = sess.run(prediction,
                          feed_dict={
Example #6
0
    def run(self):
        training_dataset, valid_dataset = data.make_sequences(
            self.input, self.char2vec, self.output_char2vec, self.seq_length)

        input_batch = training_dataset.input_batch
        target_batch = training_dataset.target_batch
        seq_lens = training_dataset.seq_lens

        hidden_size = self.modelconfig.hidden_size

        X = tf.placeholder(tf.int32, [None, self.seq_length])  # X data
        X_onehot = tf.one_hot(
            X,
            self.modelconfig.input_size)  # one hot: 1 -> 0 1 0 0 0 0 0 0 0 0

        Y = tf.placeholder(tf.int32, [None, self.seq_length])  # Y label

        Sequences = tf.placeholder(tf.int32, [None])

        keep_prob = tf.placeholder(tf.float32)

        if self.type == "multi":
            print('\n****** MultiLayer LSTM Initialize ******')

            with tf.variable_scope('cell_def'):
                cell1 = tf.nn.rnn_cell.BasicLSTMCell(num_units=hidden_size,
                                                     state_is_tuple=True)
                cell1 = tf.nn.rnn_cell.DropoutWrapper(
                    cell1, output_keep_prob=keep_prob)
                cell2 = tf.nn.rnn_cell.BasicLSTMCell(num_units=hidden_size,
                                                     state_is_tuple=True)
                cell2 = tf.nn.rnn_cell.DropoutWrapper(
                    cell2, output_keep_prob=keep_prob)
                multi_cell = tf.nn.rnn_cell.MultiRNNCell([cell1, cell2])

            with tf.variable_scope('rnn_def'):
                outputs, _states = tf.nn.dynamic_rnn(multi_cell,
                                                     X_onehot,
                                                     dtype=tf.float32,
                                                     sequence_length=Sequences)

        elif self.type == "bimul":
            print('\n****** Bidirectional LSTM Initialize ******')

            with tf.variable_scope('cell_def'):
                forward = tf.nn.rnn_cell.BasicLSTMCell(num_units=hidden_size,
                                                       state_is_tuple=True)
                forward = tf.nn.rnn_cell.DropoutWrapper(
                    forward, output_keep_prob=keep_prob)
                backward = tf.nn.rnn_cell.BasicLSTMCell(num_units=hidden_size,
                                                        state_is_tuple=True)
                backward = tf.nn.rnn_cell.DropoutWrapper(
                    backward, output_keep_prob=keep_prob)

            with tf.variable_scope('rnn_def'):
                outputs, states = tf.nn.bidirectional_dynamic_rnn(
                    forward,
                    backward,
                    inputs=X_onehot,
                    dtype=tf.float32,
                    sequence_length=Sequences)
                outputs = tf.concat(values=outputs, axis=2)

        model = tf.layers.dense(outputs,
                                self.modelconfig.output_size,
                                activation=None)
        cost = tf.reduce_mean(
            tf.nn.sparse_softmax_cross_entropy_with_logits(logits=model,
                                                           labels=Y))
        prediction = tf.argmax(model, axis=2)

        optimizer = tf.train.AdamOptimizer(learning_rate=0.005).minimize(cost)
        # optimizer = tf.train.AdamOptimizer(learning_rate=0.0001).minimize(cost)

        sess = tf.Session()
        sess.run(tf.global_variables_initializer())

        eval = utils.Evaluation(self.type, self.modelconfig.epoch, 25)

        print('\n------------ Training ------------ ')
        last_time = time.time()
        for epoch in range(self.modelconfig.epoch):

            _, loss = sess.run(
                [optimizer, cost],
                feed_dict={
                    X: input_batch,
                    Y: target_batch,
                    Sequences: seq_lens,
                    keep_prob: 0.8
                })
            if epoch % 25 == 24:
                result = sess.run(prediction,
                                  feed_dict={
                                      X: valid_dataset.input_batch,
                                      Y: valid_dataset.target_batch,
                                      Sequences: valid_dataset.seq_lens,
                                      keep_prob: 1
                                  })
                accuracy = tf.reduce_mean(
                    tf.cast(tf.equal(result, tf.cast(Y, tf.int64)),
                            tf.float32))
                accuracy_ret = sess.run(
                    accuracy, feed_dict={Y: valid_dataset.target_batch})
                speed = time.time() - last_time
                print('Epoch:', '%04d  ' % (epoch + 1), 'accuracy =',
                      '{:.6f}  '.format(accuracy_ret), 'cost =',
                      '{:.6f}'.format(loss), 'speed =', '{:.2f}'.format(speed),
                      'sec')
                last_time = time.time()

                avg_p, avg_r, avg_f = utils.print_evaluation(
                    valid_dataset.target_batch, result,
                    self.output_char2vec.char_dict)
                eval.set(epoch, accuracy_ret, loss, speed, avg_p, avg_r, avg_f)
                print('')

        print('\n------------ Testing ------------ ')
        test_sentences = data.read_data("data/test/BHXX0035.txt", 30)
        test_dataset, _ = data.make_sequences(test_sentences,
                                              self.char2vec,
                                              self.output_char2vec,
                                              self.seq_length,
                                              make_valid=False)

        result = sess.run(prediction,
                          feed_dict={
                              X: test_dataset.input_batch,
                              Y: test_dataset.target_batch,
                              Sequences: test_dataset.seq_lens,
                              keep_prob: 1
                          })

        accuracy = tf.reduce_mean(
            tf.cast(tf.equal(result, tf.cast(Y, tf.int64)), tf.float32))
        accuracy_ret = sess.run(accuracy,
                                feed_dict={Y: test_dataset.target_batch})

        print('Accuracy =', '{:.6f}'.format(accuracy_ret))

        for index, predict_sequence in enumerate(result):
            target_output, prediction_output = data.compare_sentence(
                self.output_char2vec, test_dataset.target_batch[index],
                test_dataset.input_source[index], predict_sequence)
            if index < 2:
                print("target sentence:    ", target_output[1])
                print("prediction sentence:", prediction_output[1])
        return eval
Example #7
0
def train(**kwargs):
    opt._parse(kwargs)

    model = models.CSVideoNet(opt.CR, opt.seqLength, opt.Height, opt.Width, 1)
    if opt.load_model_path:
        model.load(opt.load_model_path, True)
    '''
    if t.cuda.device_count() > 1:
        model = t.nn.DataParallel(model,device_ids=[0,1])
    '''
    model.to(opt.device)

    train_data = UCF101(opt.train_data_root, train=True)
    val_data = UCF101(opt.train_data_root, train=False)
    train_dataloader = DataLoader(train_data,
                                  opt.batch_size,
                                  shuffle=True,
                                  num_workers=opt.num_workers)
    val_dataloader = DataLoader(val_data,
                                opt.batch_size,
                                shuffle=False,
                                num_workers=opt.num_workers)

    criterion = t.nn.MSELoss()
    lr = opt.lr
    optimizer = t.optim.SGD(model.parameters(), lr=lr, momentum=opt.momentum)

    utils_eval = utils.Evaluation()
    loss_meter = meter.AverageValueMeter()
    previous_loss = 1e10

    for epoch in range(opt.max_epoch):

        loss_meter.reset()

        for ii, data in tqdm(enumerate(train_dataloader)):
            #train model
            input = data
            target = t.zeros(data[0].size(0), opt.seqLength, 32,
                             32).to(opt.device)
            nonkey_m = t.zeros(input[0].size(0), opt.seqLength - 1,
                               int(1024 * opt.CR[1])).to(opt.device)
            for i in range(opt.seqLength):
                target[:, i, :, :] = data[i].float().to(opt.device).squeeze(1)
            key_weight = key_bernoulli_weights.repeat(input[0].size(0), 1,
                                                      1).to(opt.device)
            non_key_weight = non_key_bernoulli_weights.repeat(
                input[1].size(0), 1, 1).to(opt.device)
            key_m = t.bmm(
                key_weight, input[0].float().to(opt.device).view(
                    input[0].size(0), 1024, 1)).view(input[0].size(0),
                                                     int(1024 * opt.CR[0]))
            nonkey_m[:, 0, :] = t.bmm(
                non_key_weight, input[1].view(input[1].size(0), 1024,
                                              1).float().to(opt.device)).view(
                                                  input[1].size(0),
                                                  int(1024 * opt.CR[1]))
            #nonkey_m[:,1,:] = t.bmm(non_key_weight,input[2].view(input[2].size(0),1024,1).float().to(opt.device)).view(input[2].size(0),int(1024*opt.CR[1]))
            #nonkey_m[:,2,:] = t.bmm(non_key_weight,input[3].view(opt.batch_size,1024,1).float().to(opt.device)).view(opt.batch_size,int(1024*opt.CR[1]))
            #nonkey_m[:,3,:] = t.bmm(non_key_weight,input[4].view(opt.batch_size,1024,1).float().to(opt.device)).view(opt.batch_size,int(1024*opt.CR[1]))
            #nonkey_m[:,4,:] = t.bmm(non_key_weight,input[5].view(opt.batch_size,1024,1).float().to(opt.device)).view(opt.batch_size,int(1024*opt.CR[1]))
            #nonkey_m[:,5,:] = t.bmm(non_key_weight,input[6].view(opt.batch_size,1024,1).float().to(opt.device)).view(opt.batch_size,int(1024*opt.CR[1]))
            #nonkey_m[:,6,:] = t.bmm(non_key_weight,input[7].view(opt.batch_size,1024,1).float().to(opt.device)).view(opt.batch_size,int(1024*opt.CR[1]))
            #nonkey_m[:,7,:] = t.bmm(non_key_weight,input[8].view(opt.batch_size,1024,1).float().to(opt.device)).view(opt.batch_size,int(1024*opt.CR[1]))
            #nonkey_m[:,8,:] = t.bmm(non_key_weight,input[9].view(opt.batch_size,1024,1).float().to(opt.device)).view(opt.batch_size,int(1024*opt.CR[1]))

            optimizer.zero_grad()
            score = model(key_m, nonkey_m)

            loss = criterion(score, target)
            loss.backward()
            optimizer.step()

            #t.nn.utils.clip_grad_norm(model.modules.parameters(),opt.gradient_clipping)

            loss_meter.add(loss.item())

        val_psnr_ave = val(model, val_dataloader)
        print(epoch, "result on validation dataset is:", val_psnr_ave)

        if loss_meter.value()[0] > previous_loss:
            lr = lr * opt.lr_decay
            for param_group in optimizer.param_groups:
                param_group['lr'] = lr

        previous_loss = loss_meter.value()[0]
    model.save()
        elif 'CIFAR' in args.dataset:
            datasets = CIFAR.build_dataset_providers(args, strategy)
        model = utils.load_model(args, datasets['num_classes'])

        summary_writer = tf.summary.create_file_writer(args.train_path,
                                                       flush_millis=30000)
        with summary_writer.as_default():
            utils.save_code_and_augments(args)
            total_train_time = 0

            train_step, train_loss, train_accuracy, optimizer = op_utils.Optimizer(
                args, model, strategy)

            loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
                from_logits=True, reduction=tf.keras.losses.Reduction.SUM)
            Eval = utils.Evaluation(args, model, strategy, datasets['test'],
                                    loss_object)

            print('Training starts')
            fine_tuning_time = 0
            tic = time.time()
            for step, data in enumerate(datasets['train']):
                epoch = step // datasets['train_len']
                lr = utils.scheduler(args, optimizer, epoch)
                train_step(*data)

                step += 1
                if step % args.do_log == 0:
                    template = 'Global step {0:5d}: loss = {1:0.4f} ({2:1.3f} sec/step)'
                    train_time = time.time() - tic
                    print(
                        template.format(step,