Example #1
0
    def __init__(self, global_crops_scale, local_crops_scale,
                 local_crops_number):
        flip_and_color_jitter = transforms.Compose([
            transforms.RandomHorizontalFlip(p=0.5),
            transforms.RandomApply([
                transforms.ColorJitter(
                    brightness=0.4, contrast=0.4, saturation=0.2, hue=0.1)
            ],
                                   p=0.8),
            transforms.RandomGrayscale(p=0.2),
        ])
        normalize = transforms.Compose([
            transforms.ToTensor(),
            transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ])

        # first global crop
        self.global_transfo1 = transforms.Compose([
            transforms.RandomResizedCrop(224,
                                         scale=global_crops_scale,
                                         interpolation=Image.BICUBIC),
            flip_and_color_jitter,
            utils.GaussianBlur(1.0),
            normalize,
        ])
        # second global crop
        self.global_transfo2 = transforms.Compose([
            transforms.RandomResizedCrop(224,
                                         scale=global_crops_scale,
                                         interpolation=Image.BICUBIC),
            flip_and_color_jitter,
            utils.GaussianBlur(0.1),
            utils.Solarization(0.2),
            normalize,
        ])
        # transformation for the local small crops
        self.local_crops_number = local_crops_number
        self.local_transfo = transforms.Compose([
            transforms.RandomResizedCrop(96,
                                         scale=local_crops_scale,
                                         interpolation=Image.BICUBIC),
            flip_and_color_jitter,
            utils.GaussianBlur(p=0.5),
            normalize,
        ])
              0] = (elected_lines[i][0] * rho_resolution) - round(max_dist)
        lines[i, 0, 1] = np.deg2rad(elected_lines[i][1] * theta_resulution)
    return lines


if __name__ == '__main__':
    img = cv2.imread(sys.argv[1])
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    my_img = img.copy()
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    my_gray = gray.copy()

    gray = cv2.GaussianBlur(gray, (5, 5), 1)
    edges = cv2.Canny(gray, 50, 100)

    my_gray = utl.GaussianBlur(my_gray, (5, 5), 1)
    my_edges = canny.Canny(my_gray, 30, 70)

    img = utl.DrawLines(
        img=img,
        lines=cv2.HoughLines(edges, 1, (np.pi / 180.0) * 1, 300),
    )
    my_img = utl.DrawLines(
        img=my_img,
        lines=HoughLines(my_edges, 1, (np.pi / 180.0) * 1, 300),
    )

    utl.Plot(
        imgs=[img, my_img],
        titles=[
            'OpenCv Version',

def Canny(image, threshold1, threshold2):
    img = np.float32(image)
    mag, direction = _sobel_filters(img)
    img = _non_max_suppression(mag, direction)
    img = _threshold(img, threshold1, threshold2)
    return _hysteresis(img)


if __name__ == '__main__':
    img = cv2.imread(sys.argv[1], cv2.IMREAD_GRAYSCALE)
    my_img = img.copy()

    blur = cv2.GaussianBlur(img, (5, 5), 1)
    edge = cv2.Canny(blur, 50, 100)

    my_blur = utl.GaussianBlur(my_img, (5, 5), 1)
    my_edge = Canny(my_blur, 30, 70)

    utl.Plot(
        imgs=[
            edge,
            my_edge,
        ],
        titles=[
            'OpenCv Version',
            'My Version',
        ],
        cmap='Greys_r',
    )
Example #4
0
def main_worker(gpu, ngpus_per_node, args):
    args.gpu = gpu

    logger = Logger(args)

    # suppress printing if not master
    if args.multiprocessing_distributed and args.gpu != 0:
        def print_pass(*args, **kwargs):
            pass
        logger.info = print_pass
    logger.init_info()
    logger.info("Configuration:\n{}".format(json.dumps(args.__dict__, indent=4)))

    if args.gpu is not None:
        logger.info("Use GPU: {} for training".format(args.gpu))

    if args.distributed:
        if args.dist_url == "env://" and args.rank == -1:
            args.rank = int(os.environ["RANK"])
        if args.multiprocessing_distributed:
            # For multiprocessing distributed training, rank needs to be the
            # global rank among all the processes
            args.rank = args.rank * ngpus_per_node + gpu
        dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
                                world_size=args.world_size, rank=args.rank)

    # Data loading code
    if args.aug_plus:
        train_augmentation = transforms.Compose([
            transforms.RandomResizedCrop(args.img_size, scale=(0.2, 1.)),
            transforms.RandomApply([
                transforms.ColorJitter(0.4, 0.4, 0.4, 0.1)  # not strengthened
            ], p=0.8),
            transforms.RandomGrayscale(p=0.2),
            transforms.RandomApply([tools.GaussianBlur([.1, 2.])], p=0.5),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize(mean=args.rgb_mean, std=args.rgb_std)
        ])
    else:
        train_augmentation = transforms.Compose([
            transforms.Resize(args.img_size),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize(mean=args.rgb_mean, std=args.rgb_std)
        ])
    val_augmentation = transforms.Compose([
        transforms.Resize(args.img_size),
        transforms.ToTensor(),
        transforms.Normalize(mean=args.rgb_mean, std=args.rgb_std)
    ])
    train_dataset = dataset_classes[args.dataset](args.data, subset=args.subset,
        mode='train', image_transform=train_augmentation, scale_size=args.scale_list)
    if args.val_dataset is None:
        args.val_dataset = args.dataset
    if args.val_scale_list is None:
        args.val_scale_list = args.scale_list
    val_dataset = dataset_classes[args.val_dataset](args.data, subset=args.subset,
        mode='val', image_transform=val_augmentation, scale_size=args.val_scale_list, task=args.task)

    # create model
    logger.info("=> creating model ..")
    model = model_classes[args.stage](
            backbone=args.backbone,
            layers=args.layers,
            out_channels=args.out_channels,
            mid_channels=args.mid_channels,
            num_scales=train_dataset.num_scales,
            num_classes=train_dataset.num_classes,
            normalized_embeddings=args.normalized_embeddings,
            use_bn=not args.wobn)
    if args.distributed:
        model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
    logger.info(str(model))

    # freeze part of model and create loss function
    if args.stage == 'trunk':
        # freeze branches
        for param in model.get_branches().parameters():
            param.requires_grad = False
        criterion = TrunkLoss(train_dataset.num_classes, args.out_channels,
                              args.center_update_factor, args.trunkloss_factor,
                              args.trunkloss_miner, args.trunkloss_miningin)
    elif args.stage == 'branch':
        # freeze trunk
        if not args.no_fixed_trunk:
            for param in model.get_trunk().parameters():
                param.requires_grad = False
        criterion = CMLoss(train_dataset.num_classes, args.out_channels, train_dataset.num_scales,
                           args.center_update_factor, args.centerloss_factor, args.distloss_factor, args.branchloss_miner)
    else:
        criterion = SIDLoss(train_dataset.num_classes, args.out_channels,
                           args.center_update_factor, args.trunkloss_factor, args.trunkloss_miner,
                           sidloss_factor=args.sidloss_factor)

    if args.distributed:
        # For multiprocessing distributed, DistributedDataParallel constructor
        # should always set the single device scope, otherwise,
        # DistributedDataParallel will use all available devices.
        if args.gpu is not None:
            torch.cuda.set_device(args.gpu)
            model.cuda(args.gpu)
            criterion.cuda(args.gpu)
            # When using a single GPU per process and per
            # DistributedDataParallel, we need to divide the batch size
            # ourselves based on the total number of GPUs we have
            args.batch_size = int(args.batch_size / ngpus_per_node)
            args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
            model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
        else:
            model.cuda()
            criterion.cuda()
            # DistributedDataParallel will divide and allocate batch_size to all
            # available GPUs if device_ids are not set
            model = torch.nn.parallel.DistributedDataParallel(model)
    elif args.gpu is not None:
        torch.cuda.set_device(args.gpu)
        model = model.cuda(args.gpu)
        criterion = criterion.cuda(args.gpu)
    else:
        raise NotImplementedError("Only CUDA or DistributedDataParallel is supported.")

    optimizer = getattr(torch.optim, args.optimizer)(
        model.parameters(), args.lr)
    monitor = tools.EarlyStopMonitor(mode=args.es_mode, patience=args.patience)

    if args.load:
        if os.path.isfile(args.load):
            logger.info("=> loading checkpoint '{}'".format(args.load))
            if args.gpu is None:
                checkpoint = torch.load(args.load)
            else:
                # Map model to be loaded to specified single gpu.
                loc = 'cuda:{}'.format(args.gpu)
                checkpoint = torch.load(args.load, map_location=loc)

            model = tools.load_model(model, checkpoint['state_dict'],
                strict=False, init_branches=args.init_branches)
        else:
            logger.info("=> no checkpoint found at '{}'".format(args.load))

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            logger.info("=> resume checkpoint '{}'".format(args.resume))
            if args.gpu is None:
                checkpoint = torch.load(args.resume)
            else:
                # Map model to be loaded to specified single gpu.
                loc = 'cuda:{}'.format(args.gpu)
                checkpoint = torch.load(args.resume, map_location=loc)
            args.start_epoch = checkpoint['epoch']
            model.load_state_dict(checkpoint['state_dict'])
            criterion.load_state_dict(checkpoint['criterion'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            monitor.load_state_dict(checkpoint['monitor'])
            logger.info("=> loaded checkpoint '{}' (epoch {})"
                        .format(args.resume, checkpoint['epoch']))
        else:
            logger.info("=> no checkpoint found at '{}'".format(args.resume))

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
        test_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset)
    elif args.Msampler:
        train_sampler = tools.MPerClassSampler(train_dataset.label_list, 4, len(train_dataset))
        test_sampler = None
    else:
        train_sampler = None
        test_sampler = None

    train_loader = torch.utils.data.DataLoader(
        train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
        num_workers=args.workers, pin_memory=True, sampler=train_sampler, drop_last=True)
    val_loader = torch.utils.data.DataLoader(
        val_dataset, batch_size=args.batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=True, sampler=test_sampler, drop_last=False)

    # get function handle of batch processor
    batch_processor_train = getattr(core, 'train_{}'.format(args.stage))
    batch_processor_val = getattr(core, 'val_{}'.format(args.stage))

    metric = core.val(batch_processor_val, val_loader, model, 0, args, logger)
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)
        tools.adjust_learning_rate(optimizer, epoch, args)

        # train for one epoch
        core.train(batch_processor_train, train_loader, model, criterion, optimizer, epoch, args, logger)
        metric = core.val(batch_processor_val, val_loader, model, epoch, args, logger)

        if tools.get_dist_info()[0] == 0:
            tools.save_checkpoint({
                'epoch': epoch + 1,
                'state_dict': model.state_dict(),
                'criterion': criterion.state_dict(),
                'optimizer': optimizer.state_dict(),
                'monitor': monitor.state_dict(),
            }, is_best=monitor.is_best(metric),
               filename='checkpoint_{:04d}.pth.tar'.format(epoch),
               dirpath=args.workdir)

        # metric must be d across all ranks
        if monitor.check(metric):
            logger.info("No improvement is seen for {} epoches. '\
                'Training is terminated.".format(monitor.patience))
            break
        tools.barrier()