def get_args(): parser = argparse.ArgumentParser(allow_abbrev=False) # Add data arguments parser.add_argument("--data-path", default="data", help="path to data directory") parser.add_argument("--dataset", default="bsd400", help="train dataset name") parser.add_argument("--batch-size", default=128, type=int, help="train batch size") # Add model arguments parser.add_argument("--model", default="dncnn", help="model architecture") # Add noise arguments parser.add_argument("--noise_mode", default="B", help="B - Blind S-one noise level") parser.add_argument('--noise_std', default = 25, type = float, help = 'noise level when mode is S') parser.add_argument('--min_noise', default = 0, type = float, help = 'minimum noise level when mode is B') parser.add_argument('--max_noise', default = 55, type = float, help = 'maximum noise level when mode is B') # Add optimization arguments parser.add_argument("--lr", default=1e-3, type=float, help="learning rate") parser.add_argument("--num-epochs", default=100, type=int, help="force stop training at specified epoch") parser.add_argument("--valid-interval", default=1, type=int, help="evaluate every N epochs") parser.add_argument("--save-interval", default=1, type=int, help="save a checkpoint every N steps") # Parse twice as model arguments are not known the first time parser = utils.add_logging_arguments(parser) args, _ = parser.parse_known_args() models.MODEL_REGISTRY[args.model].add_args(parser) args = parser.parse_args() return args
def get_args(): parser = argparse.ArgumentParser(allow_abbrev=False) # Add data arguments parser.add_argument("--data-path", default="data", help="path to data directory") parser.add_argument("--dataset", default="split_cifar10", help="train dataset name") parser.add_argument("--batch-size", default=10, type=int, help="train batch size") # Add model arguments parser.add_argument("--model", default="resnet", help="model architecture") # Add optimization arguments parser.add_argument("--optimizer", default="adam", help="optimizer") parser.add_argument("--lr", default=2e-4, type=float, help="learning rate") parser.add_argument("--num-repeats-per-task", default=1, type=int, help="number of repeats per task") parser.add_argument("--num-epochs", default=1, type=int, help="force stop training at specified epoch") # Parse twice as model arguments are not known the first time parser = utils.add_logging_arguments(parser) args, _ = parser.parse_known_args() models.MODEL_REGISTRY[args.model].add_args(parser) optim.OPTIMIZER_REGISTRY[args.optimizer].add_args(parser) args = parser.parse_args() return args
import torch.nn as nn import torch.utils.data as td import utils import models import models.jlu import dataset import inference from train import embeds MODES = ["word", "label", "intent"] parser = argparse.ArgumentParser(fromfile_prefix_chars="@") group = parser.add_argument_group("Logging Options") utils.add_logging_arguments(group, "predict") group.add_argument("--argparse-filename", type=str, default="predict.args") group.add_argument("--show-progress", action="store_true", default=False) group = parser.add_argument_group("Data Options") group.add_argument("--word-path", type=str, required=True) for mode in MODES: group.add_argument(f"--{mode}-vocab", type=str, required=True) group.add_argument("--data-workers", type=int, default=8) group.add_argument("--seed", type=int, default=None) group.add_argument("--unk", type=str, default="<unk>") group.add_argument("--eos", type=str, default="<eos>") group.add_argument("--bos", type=str, default="<bos>") group = parser.add_argument_group("Prediction Options") group.add_argument("--ckpt-path", type=str, required=True)
import numpy as np import torch import torch.nn as nn import torch.optim as op import torch.utils.data as td import utils import model import dataset from . import embeds parser = argparse.ArgumentParser(fromfile_prefix_chars="@") group = parser.add_argument_group("Logging Options") utils.add_logging_arguments(group, "train") group.add_argument("--argparse-filename", type=str, default="train-argparse.yml") group.add_argument("--show-progress", action="store_true", default=False) group = parser.add_argument_group("Model Parameters") model.add_arguments(group) group = parser.add_argument_group("Data Options") group.add_argument("--data-path", type=str, required=True) group.add_argument("--vocab", type=str, default=None) group.add_argument("--vocab-limit", type=int, default=None) group.add_argument("--data-workers", type=int, default=8) group.add_argument("--pin-memory", action="store_true", default=False) group.add_argument("--shuffle", action="store_true", default=False)
def get_args(): parser = argparse.ArgumentParser(allow_abbrev=False) # Add data arguments parser.add_argument("--data-path", default="../lidar_data/32_32/", help="path to data directory") parser.add_argument("--dataset", default="masked_pwc", help="masked training data for generator") parser.add_argument("--batch-size", default=32, type=int, help="train batch size") parser.add_argument("--num_scan_lines", default=1000, type=int, help="number of scan lines used to generate data") parser.add_argument("--seq_len", default=32, type=int, help="side length of the patches") parser.add_argument( "--scan_line_gap_break", default=7000, type=int, help="threshold over which scan_gap indicates a new scan line") parser.add_argument("--min_pt_count", default=1700, type=int, help="in a scan line, otherwise line not used") parser.add_argument("--max_pt_count", default=2000, type=int, help="in a scan line, otherwise line not used") parser.add_argument("--mask_pts_per_seq", default=5, type=int, help="Sqrt(masked pts), side of the missing patch") parser.add_argument("--mask_consecutive", default=True, help="True if pts are in a consecutive patch") parser.add_argument( "--stride_inline", default=5, type=int, help="The number of pts skipped between patches within the scan line") parser.add_argument( "--stride_across_lines", default=3, type=int, help="The number of pts skipped between patches across the scan line") # parser.add_argument("--n-data", default=100000,type=int, help="number of samples") # parser.add_argument("--min_sep", default=5,type=int, help="minimum constant sample count for piecwewise function") # Add model arguments parser.add_argument("--model", default="lidar_unet2d", help="Model used") # parser.add_argument("--in_channels", default=7, type=int, help="Number of in channels") # parser.add_argument("--modelG", default="unet1d", help="Generator model architecture") # parser.add_argument("--modelD", default="gan_discriminator", help="Discriminator model architecture") parser.add_argument( "--wtd_loss", default=True, help="True if MSELoss should be weighted by xyz distances") # parser.add_argument("--g_d_update_ratio", default = 2, type=int, help="How many times to update G for each update of D") # Add optimization arguments parser.add_argument("--lr", default=.005, type=float, help="learning rate for generator") parser.add_argument("--weight_decay", default=0., type=float, help="weight decay for optimizer") # Logistics arguments parser.add_argument("--num-epochs", default=10, type=int, help="force stop training at specified epoch") parser.add_argument("--valid-interval", default=1, type=int, help="evaluate every N epochs") parser.add_argument("--save-interval", default=1, type=int, help="save a checkpoint every N steps") parser.add_argument("--output_dir", default='../lidar_experiments/2d', help="where the model and logs are saved.") parser.add_argument( "--MODEL_PATH_LOAD", default= '../lidar_experiments/2d/lidar_unet2d/lidar-unet2d-Nov-08-16:29:49/checkpoints/checkpoint_best.pt', help="where to load an existing model from") # Parse twice as model arguments are not known the first time parser = utils.add_logging_arguments(parser) args, _ = parser.parse_known_args() models.MODEL_REGISTRY[args.model].add_args(parser) # models.MODEL_REGISTRY[args.modelD].add_args(parser) args = parser.parse_args() print("vars(args)", vars()) return args
import argparse import collections import torch import torch.nn as nn import torch.utils.data as td import utils import model import dataset parser = argparse.ArgumentParser(fromfile_prefix_chars="@") group = parser.add_argument_group("Logging Options") utils.add_logging_arguments(group, "generate") group.add_argument("--argparse-filename", type=str, default="generate-argparse.yml") group.add_argument("--samples-filename", type=str, default="samples.txt") group.add_argument("--neighbors-filename", type=str, default="neighbors.txt") group.add_argument("--show-progress", action="store_true", default=False) group = parser.add_argument_group("Data Options") group.add_argument("--data-path", type=str, default=None) group.add_argument("--vocab", type=str, required=True) group.add_argument("--data-workers", type=int, default=8) group.add_argument("--seed", type=int, default=None) group.add_argument("--unk", type=str, default="<unk>") group.add_argument("--eos", type=str, default="<eos>") group.add_argument("--bos", type=str, default="<bos>")