def run(self, label, features): self.reset_spatial_encoder() self.reset_temporal_encoder() for i in range(len(features)): self.run_spatial_encoder(features.iloc[i,:]) if (self.is_early_fusion): self.output_R_fused = utils.bundle([self.spatial_encoder_GSR.output_R, self.spatial_encoder_ECG.output_R, self.spatial_encoder_EEG.output_R]) self.run_temporal_encoder() if (not self.is_early_fusion): self.output_T_fused = utils.bundle([self.temporal_encoder_GSR.output_T, self.temporal_encoder_ECG.output_T, self.temporal_encoder_EEG.output_T]) if (i > 1): if (label == 'test'): actual_label_v = utils.classify(self.feature_memory.ds_label_v.iloc[i-self.ngram_size+1:i+1,0]) actual_label_a = utils.classify(self.feature_memory.ds_label_a.iloc[i-self.ngram_size+1:i+1,0]) self.predict_am_internal(actual_label_v, actual_label_a) else: self.accumulate_am(label) if (label == 'test'): self.compute_summary() else: self.bundle_am(label)
def bundle(self, input_label): if (input_label == "v_plus"): self.prototype_v_plus = pd.Series( data=utils.bundle(self.accumulate_v_plus)) elif (input_label == "v_min"): self.prototype_v_min = pd.Series( data=utils.bundle(self.accumulate_v_min)) elif (input_label == "a_high"): self.prototype_a_high = pd.Series( data=utils.bundle(self.accumulate_a_high)) elif (input_label == "a_low"): self.prototype_a_low = pd.Series( data=utils.bundle(self.accumulate_a_low)) else: print("Invalid input label given")
def practitioner_conversion(input_path, map_df, output_path, partition): filter_cols = ['PROVIDERID', 'PROVIDER_SEX'] input_df, subset_map_df = get_input_df("PROVIDER", input_path, map_df, use_cols=filter_cols) def map_one_row(row): entry = { "fullUrl": "https://www.hl7.org/fhir/practitioner.html", "resource": { "resourceType": "Practitioner", "id": row['PROVIDERID'], "gender": subset_map_df.loc['PROVIDER_SEX', row['PROVIDER_SEX']].at['fhir_out_cd'] } } input_fhir_entries.append(entry) return i = 0 partition = int(partition) input_df_len = len(input_df) input_dir = os.path.join(output_path, 'Practitioner') write_fhir_0_json(input_dir) while i < input_df_len: input_fhir_entries = [] part_input_df = input_df.iloc[i:i + partition, :] part_input_df.apply(lambda row: map_one_row(row), axis=1) part_input_df_len = len(part_input_df) file_name = get_partition_file_name(partition, part_input_df_len, i) write_fhir_json(bundle(entry=input_fhir_entries), input_dir, file_name) i = i + partition return
def bundle(self): if self.use_final_hv: self.bind_input[self.num_channel] = utils.bind( [self.bind_input[self.num_channel - 1], self.bind_input[1]]) self.output_R = pd.Series(utils.bundle(self.bind_input))
def main(argv): arg_parser = ArgParser() args = arg_parser.parse(argv) game_hash = args.game_hash # Set up logging formatter = logging.Formatter('%(asctime)s %(message)s') logging.basicConfig(filename=os.path.join(args.log_path, 'game_{}_vms.log'.format(game_hash)), level=logging.DEBUG, format='%(asctime)s %(message)s', datefmt="%H:%M:%S", filemode='w') console = logging.StreamHandler() console.setLevel(logging.INFO) console.setFormatter(formatter) logging.getLogger('').addHandler(console) try: game = args.game logging.debug("Game description JSON: {}".format(game)) status(game_hash, "Started creating VMs", args.remote) assert re.match(r'[a-zA-Z0-9]+\Z', game_hash) status(game_hash, "PENDING", args.remote) game_name = game['name'] assert re.match(r'[a-zA-Z0-9 _-]+\Z', game_name) teams = game['teams'] services = [s['service_name'] for s in game['services']] sudo = game.get('sudo', False) logging.info("Game name: {}".format(game_name)) logging.info("Teams: {}".format(teams)) logging.info("Services: {}".format(services)) assert game['num_services'] == len(game['services']) assert game['num_services'] == len(services) # Avoid an IP conflict with the organization VM (10.7.254.10) assert len(teams) < 200 #Cleaning up previous creations clean_up(args.output_path, game_hash, teams, bundle=True) game_dir = gamepath(args.output_path, game_hash) root_key_path = os.path.join(game_dir, "root_key") root_public_key = create_ssh_key(root_key_path) create_org(args.output_path, game_hash, game_name, teams, services, root_key_path, args.remote) for team_id, team in enumerate(teams, start=1): team_public_key = create_ssh_key("{}/team{}_key".format(game_dir, team_id)) create_team(args.output_path, game_hash, team_id, root_public_key, team_public_key, team['password'], sudo, services, args.remote) bundle(game_hash, "Organization", "root_key", "organization", args.output_path, args.remote) for team_id, team in enumerate(teams, start=1): team_name = team['name'] bundle(game_hash, "Team{}".format(team_id), "team{}_key".format(team_id), team_name, args.output_path, args.remote) status(game_hash, "Cleaning up the build") clean_up(args.output_path, game_hash, teams) status(game_hash, "READY") except: status(game_hash, "An error occurred. Contact us and report game " "{}".format(game_hash)) status(game_hash, "ERROR") logging.exception("Exception") os.system("echo 'Creation for {} failed, see the log in /tmp' | " "mail -s 'Error creating game {}' " "root".format(game_hash, game_hash))
def condition_conversion(input_path, map_df, output_path, partition): # read DEATH_CAUSE to add to condition resource as needed dc_df = pd.read_csv(os.path.join(input_path, "DEATH_CAUSE.csv"), sep='|', index_col=['PATID'], usecols=['PATID', 'DEATH_CAUSE', 'DEATH_CAUSE_CODE']) def map_one_condition(row): entry = { "fullUrl": "https://www.hl7.org/fhir/condition.html", "resource": { "resourceType": "Condition", "id": row['CON_IDENTIFIER'], "clinicalStatus": row['CON_CLINSTATUS'], "subject": { "reference": "Patient/{}".format(row['CON_SUBJECT_REFERENCE']) }, "context": { "reference": "Encounter/{}".format(row['CON_CONTEXT_REFERENCE']) } } } if not pd.isnull(row['CON_CATEGORY_CODING_SYST']) or not pd.isnull(row['CON_CATEGORY_CODING_CODE']): cat_dict = {} code_dict = {} if not pd.isnull(row['CON_CATEGORY_CODING_SYST']): code_dict['system'] = row['CON_CATEGORY_CODING_SYST'] if not pd.isnull(row['CON_CATEGORY_CODING_CODE']): code_dict['code'] = row['CON_CATEGORY_CODING_CODE'] cat_dict['coding'] = [code_dict] entry['resource']['category'] = [cat_dict] if not pd.isnull(row['CON_CODE_CODING_SYST']) or not pd.isnull(row['CON_CODE_CODING_CODE']) or \ row['PATID'] in dc_df.index: coding_dict = {} code_dict = {'coding': []} if not pd.isnull(row['CON_CODE_CODING_SYST']): coding_dict['system'] = row['CON_CODE_CODING_SYST'] if not pd.isnull(row['CON_CODE_CODING_CODE']): coding_dict['code'] = row['CON_CODE_CODING_CODE'] code_dict['coding'].append(coding_dict) if row['CON_SUBJECT_REFERENCE'] in dc_df.index: dc_codes = dc_df.loc[row['CON_SUBJECT_REFERENCE']] def map_one_dc_code(dc_row): if str(dc_row['DEATH_CAUSE_CODE']) == '09': code_system = 'http://hl7.org/fhir/sid/icd-9-cm' elif str(dc_row['DEATH_CAUSE_CODE']) == '10': code_system = 'http://hl7.org/fhir/sid/icd-10-cm' else: code_system = None if code_system: dc_code_dict = { 'system': code_system, 'code': dc_row['DEATH_CAUSE'] } code_dict['coding'].append(dc_code_dict) return if isinstance(dc_codes, pd.DataFrame): dc_codes.apply(lambda dc_row: map_one_dc_code(dc_row), axis=1) else: # it is of type Series map_one_dc_code(dc_codes) entry['resource']['code'] = code_dict if not pd.isnull(row['CON_ASSERTER_REFERENCE']): entry['resource']['asserter'] = { "reference": "Practitioner/{}".format(row['CON_ASSERTER_REFERENCE']) } if not pd.isnull(row['CON_ASSERT_DATE']): entry['resource']['assertedDate'] = row['CON_ASSERT_DATE'] if not pd.isnull(row['CON_ABATEDATE']): entry['resource']['abatementDateTime'] = row['CON_ABATEDATE'] if not pd.isnull(row['CON_ONSETDATE']): entry['resource']['onsetDateTime'] = row['CON_ONSETDATE'] cond_fhir_entries.append(entry) return filter_cols = ["CONDITIONID", "PATID", "ENCOUNTERID", "CONDITION_TYPE", "CONDITION", "REPORT_DATE", "RESOLVE_DATE", "ONSET_DATE", 'CONDITION_STATUS', 'CONDITION_SOURCE'] input_df, subset_map_df = get_input_df("CONDITION", input_path, map_df, use_cols=filter_cols) input_df = input_df.loc[input_df['CONDITION_SOURCE'] == 'HC'] input_df.drop(columns=["CONDITION_SOURCE"]) input_df.loc[(input_df.CONDITION_TYPE != 'HP') & (input_df.CONDITION_TYPE != 'SM') & (input_df.CONDITION_TYPE != '09') & (input_df.CONDITION_TYPE != '10') & (input_df.CONDITION_TYPE != '11'), 'CONDITION_TYPE'] = None input_df.loc[(input_df.CONDITION_TYPE == '09'), 'CONDITION_TYPE'] = 'http://hl7.org/fhir/sid/icd-9-cm' input_df.loc[(input_df.CONDITION_TYPE == '10'), 'CONDITION_TYPE'] = 'http://hl7.org/fhir/sid/icd-10-cm' input_df.loc[(input_df.CONDITION_TYPE == '11'), 'CONDITION_TYPE'] = 'http://hl7.org/fhir/sid/icd-11-cm' input_df.loc[(input_df.CONDITION_TYPE == 'SM'), 'CONDITION_TYPE'] = 'http://snomed.info/sct' input_df.loc[(input_df.CONDITION_TYPE == 'HP'), 'CONDITION_TYPE'] = 'https://hpo.jax.org/app/' input_df['CONDITION_STATUS'] = input_df['CONDITION_STATUS'].map( lambda x: subset_map_df.loc['CONDITION_STATUS', x].at['fhir_out_cd']) mapping = {"CONDITIONID": "CON_IDENTIFIER", "PATID": "CON_SUBJECT_REFERENCE", "ENCOUNTERID": "CON_CONTEXT_REFERENCE", "CONDITION_TYPE": "CON_CODE_CODING_SYST", "CONDITION": "CON_CODE_CODING_CODE", "REPORT_DATE": "CON_ASSERT_DATE", "RESOLVE_DATE": "CON_ABATEDATE", "ONSET_DATE": "CON_ONSETDATE", "CONDITION_STATUS": "CON_CLINSTATUS"} input_df.rename(columns=mapping, inplace=True) input_df['CON_ASSERTER_REFERENCE'] = None input_df['CON_CATEGORY_CODING_SYST'] = 'https://www.hl7.org/fhir/valueset-condition-category' input_df['CON_CATEGORY_CODING_CODE'] = 'problem-list-item' input_df = input_df.drop_duplicates() dx_df = pd.read_csv(os.path.join(input_path, "DIAGNOSIS.csv"), sep='|', usecols=['DIAGNOSISID', 'ENCOUNTERID', 'PATID', 'PROVIDERID', 'DX_TYPE', 'DX', 'ADMIT_DATE']) dx_df.loc[(dx_df.DX_TYPE != 'SM') & (dx_df.DX_TYPE != '09') & (dx_df.DX_TYPE != '10') & (dx_df.DX_TYPE != '11'), 'DX_TYPE'] = None dx_df.loc[(dx_df.DX_TYPE == '09'), 'DX_TYPE'] = 'http://hl7.org/fhir/sid/icd-9-cm' dx_df.loc[(dx_df.DX_TYPE == '10'), 'DX_TYPE'] = 'http://hl7.org/fhir/sid/icd-10-cm' dx_df.loc[(dx_df.DX_TYPE == '11'), 'DX_TYPE'] = 'http://hl7.org/fhir/sid/icd-11-cm' dx_df.loc[(dx_df.DX_TYPE == 'SM'), 'DX_TYPE'] = 'http://snomed.info/sct' mapping = {"DIAGNOSISID": "CON_IDENTIFIER", "PATID": "CON_SUBJECT_REFERENCE", "ENCOUNTERID": "CON_CONTEXT_REFERENCE", "PROVIDERID": "CON_ASSERTER_REFERENCE", "DX_TYPE": "CON_CODE_CODING_SYST", "DX": "CON_CODE_CODING_CODE", "ADMIT_DATE": "CON_ASSERT_DATE"} dx_df.rename(columns=mapping, inplace=True) dx_df['CON_CATEGORY_CODING_SYST'] = 'https://www.hl7.org/fhir/valueset-condition-category' dx_df['CON_CATEGORY_CODING_CODE'] = 'encounter-diagnosis' dx_df['CON_CLINSTATUS'] = 'active' dx_df['CON_ABATEDATE'] = None dx_df['CON_ONSETDATE'] = None dx_df = dx_df.drop_duplicates() join_df = pd.concat([dx_df, input_df]) i = 0 partition = int(partition) join_df_len = len(join_df) cond_dir = os.path.join(output_path, 'Condition') write_fhir_0_json(cond_dir) while i < join_df_len: cond_fhir_entries = [] part_pat_df = join_df.iloc[i:i+partition, :] part_pat_df.apply(lambda row: map_one_condition(row), axis=1) part_pat_df_len = len(part_pat_df) file_name = get_partition_file_name(partition, part_pat_df_len, i) write_fhir_json(bundle(entry=cond_fhir_entries), cond_dir, file_name) i = i + partition return
def procedure_conversion(input_path, output_path, partition): filter_cols = [ 'PROCEDURESID', 'PATID', 'ENCOUNTERID', 'PX_TYPE', 'PX', 'PX_DATE', 'PROVIDERID' ] input_df = pd.read_csv(os.path.join(input_path, 'PROCEDURES.csv'), sep='|', usecols=filter_cols) type_to_url = { '09': 'http://hl7.org/fhir/sid/icd-9-cm/', '10': 'http://hl7.org/fhir/sid/icd-10-cm/', '11': 'http://hl7.org/fhir/sid/icd-11-cm/', 'CH': 'http://www.ama-assn.org/go/cpt/', 'LC': 'http://loinc.org/', 'ND': 'http://hl7.org/fhir/sid/ndc/' } def map_one_row(row): entry = { "fullUrl": "https://www.hl7.org/fhir/procedure.html", "resource": { "resourceType": "Procedure", "id": row['PROCEDURESID'], "status": "unknown", } } if not pd.isnull(row['PATID']): entry['resource']["subject"] = { "reference": "Patient/{}".format(row['PATID']) } if not pd.isnull(row['ENCOUNTERID']): entry['resource']["context"] = { "reference": "Encounter/{}".format(row['ENCOUNTERID']) } if not pd.isnull(row['PROVIDERID']): entry['resource']["performer"] = { 'actor': { "reference": "Practitioner/{}".format(row['PROVIDERID']) } } if not pd.isnull(row['PX']) and not pd.isnull(row['PX_TYPE']): coding_dict = { 'system': type_to_url[row['PX_TYPE']] if row['PX_TYPE'] in type_to_url else '', 'code': row['PX'] } code_dict = {'coding': [coding_dict]} entry['resource']['code'] = code_dict if not pd.isnull(row['PX_DATE']): entry['resource']['performed'] = { 'performedDateTime': row['PX_DATE'] } input_fhir_entries.append(entry) return i = 0 partition = int(partition) input_df_len = len(input_df) input_dir = os.path.join(output_path, 'Procedure') write_fhir_0_json(input_dir) while i < input_df_len: input_fhir_entries = [] part_input_df = input_df.iloc[i:i + partition, :] part_input_df.apply(lambda row: map_one_row(row), axis=1) part_input_df_len = len(part_input_df) file_name = get_partition_file_name(partition, part_input_df_len, i) write_fhir_json(bundle(entry=input_fhir_entries), input_dir, file_name) i = i + partition return
EEG_fm.write( series_to_string(hdc_top.feature_memory.ds_data.iloc[ i, 109:214].astype(int)) + "\n") hdc_top.run_spatial_encoder(hdc_top.feature_memory.ds_data.iloc[i, :]) GSR_output_R.write( series_to_string(hdc_top.spatial_encoder_GSR.output_R) + "\n") ECG_output_R.write( series_to_string(hdc_top.spatial_encoder_ECG.output_R) + "\n") EEG_output_R.write( series_to_string(hdc_top.spatial_encoder_EEG.output_R) + "\n") hdc_top.output_R_fused = utils.bundle([ hdc_top.spatial_encoder_GSR.output_R, hdc_top.spatial_encoder_ECG.output_R, hdc_top.spatial_encoder_EEG.output_R ]) output_R_fused.write(list_to_string(hdc_top.output_R_fused) + "\n") hdc_top.run_temporal_encoder() output_T.write(series_to_string(hdc_top.temporal_encoder.output_T) + "\n") predicted_v, predicted_a = hdc_top.predict_am() output_V_label.write(str(predicted_v) + "\n") output_A_label.write(str(predicted_a) + "\n") # Close Files im.close()
def lab_conversion(input_path, map_df, output_path, partition): input_df, subset_map_df = get_input_df("LAB_RESULT_CM", input_path, map_df) def map_one_lab(row): entry = { "fullUrl": "https://www.hl7.org/fhir/lab.html", "resource": { "resourceType": "Observation", "id": row['LAB_RESULT_CM_ID'], "category": [ { "coding": [ { "system": "http://hl7.org/fhir/observation-category", "code": "laboratory", "display": "Laboratory" } ] } ], "code": { "coding": [ { "system": "http://loinc.org", "code": row['LAB_LOINC'] } ] }, "subject": { "reference": "Patient/{}".format(row['PATID']) }, "context": { "reference": "Encounter/{}".format(row['ENCOUNTERID']) }, "effectiveDateTime": "{} {}".format(row['SPECIMEN_DATE'], row['SPECIMEN_TIME']), "issued": row['RESULT_DATE'], "interpretation": { "coding": [ { "system": "http://hl7.org/fhir/ValueSet/observation-interpretation", "code": subset_map_df.loc['ABN_IND', row['ABN_IND']].at['fhir_out_cd'] } ] } } } if row['RESULT_QUAL'] != 'NI': entry['resource']["valueString"] = '{} {}'.format(row['RESULT_QUAL'], row['RAW_RESULT']) if row['RESULT_UNIT'] != 'NI': entry['resource']['valueQuantity'] = { "code": row['RESULT_UNIT'] } comparator = subset_map_df.loc['RESULT_MODIFIER', row['RESULT_MODIFIER']].at['fhir_out_cd'] if not pd.isnull(comparator): entry['resource']['valueQuantity']["comparator"] = comparator if not pd.isnull(row['NORM_RANGE_LOW']) and not pd.isnull(row['NORM_RANGE_HIGH']): entry['resource']['referenceRange'] = { "low": float(row['NORM_RANGE_LOW']), "high": row['NORM_RANGE_HIGH'] } lab_fhir_entries.append(entry) return i = 0 partition = int(partition) pat_df_len = len(input_df) pat_dir = os.path.join(output_path, 'Lab') write_fhir_0_json(pat_dir) while i < pat_df_len: lab_fhir_entries = [] part_pat_df = input_df.iloc[i:i+partition, :] part_pat_df.apply(lambda row: map_one_lab(row), axis=1) part_pat_df_len = len(part_pat_df) file_name = get_partition_file_name(partition, part_pat_df_len, i) write_fhir_json(bundle(entry=lab_fhir_entries), pat_dir, file_name) i = i + partition return
def encounter_conversion(input_path, map_df, output_path, partition): def map_one_encounter(row): entry = { "fullUrl": "https://www.hl7.org/fhir/encounter.html", "resource": { "resourceType": "Encounter", "id": row["ENCOUNTERID"], "subject": { "reference": "Patient/{}".format(row["PATID"]) }, "participant": [{ "individual": { "display": "Practitioner/{}".format(row['PROVIDERID']) } }], "period": { "start": row['ADMIT_DATE'], "end": row['DISCHARGE_DATE'] }, } } if str(row['ENC_TYPE']).strip() and not pd.isnull(row['ENC_TYPE']): mapped_code = subset_map_df.loc['ENC_TYPE', row['ENC_TYPE']].at['fhir_out_cd'] if not pd.isnull(mapped_code): entry['resource']['class'] = { "system": "http://hl7.org/fhir/v3/ActCode", "code": mapped_code, "display": subset_map_df.loc['ENC_TYPE', row['ENC_TYPE']].at['fhir_out_char'] } if not pd.isnull(row['ADMITTING_SOURCE']): if 'hospitalization' not in entry['resource']: entry['resource']['hospitalization'] = {} entry['resource']['hospitalization']['admitSource'] = { "text": subset_map_df.loc['ADMITTING_SOURCE', row['ADMITTING_SOURCE']].at['fhir_out_char'] } if not pd.isnull(row['DISCHARGE_STATUS']): if 'hospitalization' not in entry['resource']: entry['resource']['hospitalization'] = {} entry['resource']['hospitalization']['dischargeDisposition'] = { "coding": [{ "system": "http://hl7.org/fhir/discharge-disposition", "code": subset_map_df.loc[ 'DISCHARGE_STATUS', row['DISCHARGE_STATUS']].at['fhir_out_cd'], "display": subset_map_df.loc[ 'DISCHARGE_STATUS', row['DISCHARGE_STATUS']].at['fhir_out_char'] }] } if not pd.isnull(row['DIAGNOSISID']): entry['resource']["diagnosis"] = [{ "condition": { "reference": "Condition/{}".format(row['DIAGNOSISID']) }, "role": { "coding": [{ "system": "http://hl7.org/fhir/diagnosis-role", "code": "DD" }] }, "rank": 1 }] enc_fhir_entries.append(entry) return input_df, subset_map_df = get_input_df("ENCOUNTER", input_path, map_df) dx_df = pd.read_csv( os.path.join(input_path, "DIAGNOSIS.csv"), sep='|', usecols=['DIAGNOSISID', 'ENCOUNTERID', 'PDX', 'DX_SOURCE']) filter_dx_df = dx_df.loc[(dx_df['PDX'] == 'P') & (dx_df['DX_SOURCE'] == 'DI')] join_df = pd.merge(input_df, filter_dx_df, how='left', left_on=['ENCOUNTERID'], right_on=['ENCOUNTERID']) i = 0 partition = int(partition) join_df_len = len(join_df) enc_dir = os.path.join(output_path, 'Encounter') write_fhir_0_json(enc_dir) while i < join_df_len: enc_fhir_entries = [] part_pat_df = join_df.iloc[i:i + partition, :] part_pat_df.apply(lambda row: map_one_encounter(row), axis=1) part_pat_df_len = len(part_pat_df) file_name = get_partition_file_name(partition, part_pat_df_len, i) write_fhir_json(bundle(entry=enc_fhir_entries), enc_dir, file_name) i = i + partition return
def patient_conversion(input_path, map_df, output_path, partition): pat_df, subset_map_df = get_input_df("DEMOGRAPHIC", input_path, map_df) address_df = pd.read_csv(os.path.join(input_path, "LDS_ADDRESS_HISTORY.csv"), sep='|', index_col=['PATID'], usecols=['ADDRESSID', 'PATID', 'ADDRESS_USE', 'ADDRESS_CITY', 'ADDRESS_STATE', 'ADDRESS_TYPE', 'ADDRESS_ZIP5', 'ADDRESS_ZIP9', 'ADDRESS_PERIOD_START', 'ADDRESS_PERIOD_END'], dtype=str) addr_subset_map_df = map_df.loc["LDS_ADDRESS_HISTORY", :] # read DEATH to add to patient resource as needed death_df = pd.read_csv(os.path.join(input_path, "DEATH.csv"), sep='|', index_col=['PATID'], usecols=['PATID', 'DEATH_SOURCE', 'DEATH_DATE']) def map_one_patient(row): pat_address_list = [] def map_one_address(addr_row): # map Zip9, when it exists, from "286389277" to "28638-9277" - UNC-specfiic if not pd.isnull(addr_row['ADDRESS_ZIP9']): addr_str = addr_row['ADDRESS_ZIP9'] postcode = '{}-{}'.format(addr_str[:5], addr_str[5:9]) elif not pd.isnull(addr_row['ADDRESS_ZIP5']): postcode = addr_row['ADDRESS_ZIP5'][:5] else: postcode = None addr_dict = { "use": addr_subset_map_df.loc['ADDRESS_USE', addr_row['ADDRESS_USE']].at['fhir_out_cd'], "type": addr_subset_map_df.loc['ADDRESS_TYPE', addr_row['ADDRESS_TYPE']].at['fhir_out_cd'], "city": addr_row['ADDRESS_CITY'], "postalCode": postcode, "period": { "start": addr_row['ADDRESS_PERIOD_START'] } } if not pd.isnull(addr_row['ADDRESS_STATE']): addr_dict["state"] = addr_row['ADDRESS_STATE'] if not pd.isnull(addr_row['ADDRESS_PERIOD_END']): addr_dict['period']["end"] = addr_row['ADDRESS_PERIOD_END'] pat_address_list.append(addr_dict) return entry = { "fullUrl": "https://www.hl7.org/fhir/patient.html", "resource": { "resourceType": "Patient", "id": row['PATID'], "gender": subset_map_df.loc['SEX', row['SEX']].at['fhir_out_cd'], "birthDate": row['BIRTH_DATE'], "maritalStatus": { "coding": [ { "system": "http://terminology.hl7.org/CodeSystem/v3-MaritalStatus" } ] } } } mapped_race = subset_map_df.loc['RACE', row['RACE']].at['fhir_out_cd'] if not pd.isnull(mapped_race): if 'extension' not in entry['resource']: entry['resource']['extension'] = [] entry['resource']['extension'].append( { "url": "http://terminology.hl7.org/ValueSet/v3-Race", "valueString": mapped_race }) mapped_ethnic = subset_map_df.loc['HISPANIC', row['HISPANIC']].at['fhir_out_cd'] if not pd.isnull(mapped_ethnic): if 'extension' not in entry['resource']: entry['resource']['extension'] = [] entry['resource']['extension'].append( { "url": "http://hl7.org/fhir/v3/Ethnicity", "valueString": mapped_ethnic }) if row['PATID'] in address_df.index: part_addr_df = address_df.loc[row['PATID']] if isinstance(part_addr_df, pd.DataFrame): part_addr_df.apply(lambda addr_row: map_one_address(addr_row), axis=1) else: # it is of type Series map_one_address(part_addr_df) entry['resource']['address'] = pat_address_list if row['PATID'] in death_df.index: if not pd.isnull(death_df.loc[row['PATID']].at['DEATH_DATE']): entry['resource']['deceasedDateTime'] = death_df.loc[row['PATID']].at['DEATH_DATE'] else: entry['resource']['deceasedBoolean'] = True pat_fhir_entries.append(entry) return i = 0 partition = int(partition) pat_df_len = len(pat_df) pat_dir = os.path.join(output_path, 'Patient') write_fhir_0_json(pat_dir) while i < pat_df_len: pat_fhir_entries = [] part_pat_df = pat_df.iloc[i:i+partition, :] part_pat_df.apply(lambda row: map_one_patient(row), axis=1) part_pat_df_len = len(part_pat_df) file_name = get_partition_file_name(partition, part_pat_df_len, i) write_fhir_json(bundle(entry=pat_fhir_entries), pat_dir, file_name) i = i + partition return
def vital_conversion(input_path, map_df, output_path, partition): def map_one_vital(row): entry = { "fullUrl": "https://www.hl7.org/fhir/vital.html", "resource": { "resourceType": "Observation", "id": row['VITALID'], "status": 'final' } } if not pd.isnull(row['MEASURE_DATE']): entry['resource']["effectiveDateTime"] = row['MEASURE_DATE'] if not pd.isnull(row['PATID']): entry['resource']["subject"] = { "reference": "Patient/{}".format(row['PATID']) } if not pd.isnull(row['ENCOUNTERID']): entry['resource']["context"] = { "reference": "Encounter/{}".format(row['ENCOUNTERID']) } if not pd.isna(row['SMOKING']) and not pd.isnull(row['SMOKING']): cat_code_dict = { 'system': "http://hl7.org/fhir/ValueSet/observation-category", 'code': 'social-history', "display": 'Social History' } cat_dict = {'coding': [cat_code_dict]} entry['resource']['category'] = [cat_dict] coding_dict = { "system": 'http://snomed.info/sct/', "code": subset_map_df.loc['SMOKING', row['SMOKING']].at['fhir_out_cd'], "display": subset_map_df.loc['SMOKING', row['SMOKING']].at['fhir_out_char'] } entry['resource']['code'] = {'coding': [coding_dict]} elif not row['TOBACCO']: entry['resource']['valueQuantity'] = [] cat_code_dict = { 'system': "http://hl7.org/fhir/ValueSet/observation-category", 'code': 'vital-signs', "display": 'Vital Signs' } cat_dict = {'coding': [cat_code_dict]} entry['resource']['category'] = [cat_dict] code_code_array = [] if row['HT']: entry['resource']['valueQuantity'].append({ 'system': 'https://unitsofmeasure.org', 'value': row['HT'], 'code': '[in_i]' }) coding_dict = { "system": 'http://loinc.org/', "code": '8302-2', "display": 'Body height' } code_code_array.append(coding_dict) if row['WT']: entry['resource']['valueQuantity'].append({ 'system': 'https://unitsofmeasure.org', 'value': row['WT'], 'code': '[lb_av]' }) coding_dict = { "system": 'http://loinc.org/', "code": '29463-7', "display": 'Body weight' } code_code_array.append(coding_dict) if row['SYSTOLIC']: entry['resource']['valueQuantity'].append({ 'system': 'https://unitsofmeasure.org', 'value': row['SYSTOLIC'], 'code': 'mm[Hg]' }) coding_dict = { "system": 'http://loinc.org/', "code": '8480-6', "display": 'Systolic blood pressure' } code_code_array.append(coding_dict) if row['DIASTOLIC']: entry['resource']['valueQuantity'].append({ 'system': 'https://unitsofmeasure.org', 'value': row['DIASTOLIC'], 'code': 'mm[Hg]' }) coding_dict = { "system": 'http://loinc.org/', "code": '8462-4', "display": 'Diastolic blood pressure' } code_code_array.append(coding_dict) if row['ORIGINAL_BMI']: entry['resource']['valueQuantity'].append({ 'system': 'https://unitsofmeasure.org', 'value': row['ORIGINAL_BMI'], 'code': 'kg/m2' }) coding_dict = { "system": 'http://loinc.org/', "code": '36156-5', "display": 'Body mass index' } code_code_array.append(coding_dict) entry['resource']['code'] = {'coding': code_code_array} vital_fhir_entries.append(entry) return filter_cols = [ "VITALID", "PATID", "ENCOUNTERID", "HT", "SYSTOLIC", "MEASURE_DATE", "SMOKING", "TOBACCO", "DIASTOLIC", "ORIGINAL_BMI", "WT" ] input_df, subset_map_df = get_input_df("VITAL", input_path, map_df, use_cols=filter_cols) i = 0 partition = int(partition) input_df_len = len(input_df) vital_dir = os.path.join(output_path, 'Vital') write_fhir_0_json(vital_dir) while i < input_df_len: vital_fhir_entries = [] part_pat_df = input_df.iloc[i:i + partition, :] part_pat_df.apply(lambda row: map_one_vital(row), axis=1) part_pat_df_len = len(part_pat_df) file_name = get_partition_file_name(partition, part_pat_df_len, i) write_fhir_json(bundle(entry=vital_fhir_entries), vital_dir, file_name) i = i + partition return
def medicationrequest_conversion(input_path, map_df, output_path, partition): prescribe_df, prescribe_subset_map_df = get_input_df( "PRESCRIBING", input_path, map_df) def map_one_medicationrequest(row): entry = { "fullUrl": "https://www.hl7.org/fhir/medicationrequest.html", "resource": { "resourceType": "MedicationRequest", "id": row["PRESCRIBINGID"], "intent": "order", "medicationCodeableConcept": { "coding": [{ "system": "http://www.nlm.nih.gov/research/umls/rxnorm", "code": str(row["RXNORM_CUI"]), "display": str(row["RAW_RX_MED_NAME"]) }] }, "subject": { "reference": "Patient/{}".format(row["PATID"]) }, "authoredOn": str(row["RX_ORDER_DATE"]), "requester": { "agent": { "reference": "Practitioner/{}".format(row["RX_PROVIDERID"]) } }, "dosageInstruction": [{ "text": prescribe_subset_map_df.loc[ 'RX_FREQUENCY', row['RX_FREQUENCY']].at['fhir_out_cd'], "asNeededBoolean": prescribe_subset_map_df.loc[ 'RX_PRN_FLAG', row['RX_PRN_FLAG']].at['fhir_out_cd'] if not pd.isnull(row['RX_PRN_FLAG']) else None, "route": { "coding": [{ "code": str(row["RX_ROUTE"]) }] }, "doseQuantity": { "value": row["RX_DOSE_ORDERED"], "unit": row["RX_DOSE_ORDERED_UNIT"] } }], "dispenseRequest": { "validityPeriod": { "start": row["RX_START_DATE"], "end": row["RX_END_DATE"] } }, "substitution": { "allowed": prescribe_subset_map_df.loc[ 'RX_DISPENSE_AS_WRITTEN', row['RX_DISPENSE_AS_WRITTEN']].at['fhir_out_cd'] } } } prescribe_fhir_entries.append(entry) return i = 0 partition = int(partition) mr_dir = os.path.join(output_path, 'MedicationRequest') write_fhir_0_json(mr_dir) prescribe_df_len = len(prescribe_df) while i < prescribe_df_len: prescribe_fhir_entries = [] part_prescribe_df = prescribe_df.iloc[i:i + partition, :] part_prescribe_df.apply(lambda row: map_one_medicationrequest(row), axis=1) part_prescribe_df_len = len(part_prescribe_df) file_name = get_partition_file_name(partition, part_prescribe_df_len, i) write_fhir_json(bundle(entry=prescribe_fhir_entries), mr_dir, file_name) i = i + partition return
def main(argv): arg_parser = ArgParser() args = arg_parser.parse(argv) game_hash = args.game_hash # Set up logging formatter = logging.Formatter('%(asctime)s %(message)s') logging.basicConfig(filename=os.path.join( args.log_path, 'game_{}_vms.log'.format(game_hash)), level=logging.DEBUG, format='%(asctime)s %(message)s', datefmt="%H:%M:%S", filemode='w') console = logging.StreamHandler() console.setLevel(logging.INFO) console.setFormatter(formatter) logging.getLogger('').addHandler(console) try: game = args.game logging.debug("Game description JSON: {}".format(game)) status(game_hash, "Started creating VMs", args.remote) assert re.match(r'[a-zA-Z0-9]+\Z', game_hash) status(game_hash, "PENDING", args.remote) game_name = game['name'] assert re.match(r'[a-zA-Z0-9 _-]+\Z', game_name) teams = game['teams'] services = [s['service_name'] for s in game['services']] sudo = game.get('sudo', False) logging.info("Game name: {}".format(game_name)) logging.info("Teams: {}".format(teams)) logging.info("Services: {}".format(services)) assert game['num_services'] == len(game['services']) assert game['num_services'] == len(services) # Avoid an IP conflict with the organization VM (10.7.254.10) assert len(teams) < 200 #Cleaning up previous creations clean_up(args.output_path, game_hash, teams, bundle=True) game_dir = gamepath(args.output_path, game_hash) root_key_path = os.path.join(game_dir, "root_key") root_public_key = create_ssh_key(root_key_path) create_org(args.output_path, game_hash, game_name, teams, services, root_key_path, args.remote) for team_id, team in enumerate(teams, start=1): team_public_key = create_ssh_key("{}/team{}_key".format( game_dir, team_id)) create_team(args.output_path, game_hash, team_id, root_public_key, team_public_key, team['password'], sudo, services, args.remote) bundle(game_hash, "Organization", "root_key", "organization", args.output_path, args.remote) for team_id, team in enumerate(teams, start=1): team_name = team['name'] bundle(game_hash, "Team{}".format(team_id), "team{}_key".format(team_id), team_name, args.output_path, args.remote) status(game_hash, "Cleaning up the build") clean_up(args.output_path, game_hash, teams) status(game_hash, "READY") except: status( game_hash, "An error occurred. Contact us and report game " "{}".format(game_hash)) status(game_hash, "ERROR") logging.exception("Exception") os.system("echo 'Creation for {} failed, see the log in /tmp' | " "mail -s 'Error creating game {}' " "root".format(game_hash, game_hash))
def obs_conversion(input_path, map_df, output_path, partition): filter_cols = ['OBSCLINID', 'PATID', 'ENCOUNTERID', 'OBSCLIN_PROVIDERID', 'OBSCLIN_CODE', 'OBSCLIN_TYPE', 'OBSCLIN_DATE', 'OBSCLIN_TIME', 'OBSCLIN_RESULT_NUM', 'OBSCLIN_RESULT_UNIT'] input_df, subset_map_df = get_input_df("OBS_CLIN", input_path, map_df, use_cols=filter_cols) def map_one_row(row): entry = { "fullUrl": "https://www.hl7.org/fhir/observation.html", "resource": { "resourceType": "Observation", "id": row['OBSCLINID'], "status": "final" } } if not pd.isnull(row['PATID']): entry['resource']["subject"] = { "reference": "Patient/{}".format(row['PATID']) } if not pd.isnull(row['ENCOUNTERID']): entry['resource']["context"] = { "reference": "Encounter/{}".format(row['ENCOUNTERID']) } if not pd.isnull(row['OBSCLIN_PROVIDERID']): entry['resource']["performer"] = { 'actor': { "reference": "Practitioner/{}".format(row['OBSCLIN_PROVIDERID']) } } if not pd.isnull(row['OBSCLIN_RESULT_NUM']) or not pd.isnull(row['OBSCLIN_RESULT_UNIT']): value_dict = { 'system': "http://unitsofmeasure.org", } if not pd.isnull(row['OBSCLIN_RESULT_NUM']): value_dict['value'] = row['OBSCLIN_RESULT_NUM'] if not pd.isnull(row['OBSCLIN_RESULT_UNIT']): value_dict['unit'] = row['OBSCLIN_RESULT_UNIT'] entry['resource']['valueQuantity'] = value_dict if not pd.isnull(row['OBSCLIN_DATE']): entry['resource']['valueDateTime'] = row['OBSCLIN_DATE'] if not pd.isnull(row['OBSCLIN_TIME']): entry['resource']['valueTime'] = row['OBSCLIN_TIME'] if not pd.isnull(row['OBSCLIN_CODE']): code_dict = { "code": row['OBSCLIN_CODE'] } if not pd.isnull(row['OBSCLIN_TYPE']): code_dict['system'] = subset_map_df.loc['OBSCLIN_TYPE', row['OBSCLIN_TYPE']].at['fhir_out_cd'] entry['resource']['code'] = { "coding": [code_dict] } input_fhir_entries.append(entry) return i = 0 partition = int(partition) input_df_len = len(input_df) input_dir = os.path.join(output_path, 'Observation') write_fhir_0_json(input_dir) while i < input_df_len: input_fhir_entries = [] part_input_df = input_df.iloc[i:i+partition, :] part_input_df.apply(lambda row: map_one_row(row), axis=1) part_input_df_len = len(part_input_df) file_name = get_partition_file_name(partition, part_input_df_len, i) write_fhir_json(bundle(entry=input_fhir_entries), input_dir, file_name) i = i + partition return