import sys import pickle import numpy as np import soundfile as sf import librosa from scipy import signal from librosa.filters import mel from numpy.random import RandomState from pysptk import sptk from utils import butter_highpass from utils import speaker_normalization from utils import pySTFT mel_basis = mel(22050, 1024, fmin=55, fmax=7600, n_mels=80).T # 원래 fmin=90 min_level = np.exp(-100 / 20 * np.log(10)) b, a = butter_highpass(30, 22050, order=5) spk2gen = pickle.load(open('assets/spk2gen.pkl', "rb")) # Used speakers females = [ '001', '005', '013', '017', '023', '024', '030', '032', '036', '037' ] males = ['002', '003', '004', '006', '007', '008', '009', '010', '011', '012'] used_spks = females + males # Modify as needed rootDir = '/hd0/dataset/audiobook' targetDir_f0 = '/hd0/speechsplit/preprocessed/raptf0' targetDir = '/hd0/speechsplit/preprocessed/spmel'
import os import torch tr = torch device = tr.device("cuda") if tr.cuda.is_available() else tr.device("cpu") print(device) encoders = GetCodes(hparams).eval().to(device) g_checkpoint = torch.load('assets/660000-G.ckpt', map_location=lambda storage, loc: storage) encoders.load_state_dict(g_checkpoint['model']) print("Succesfully loaded") mel_basis = mel(16000, 1024, fmin=90, fmax=7600, n_mels=80).T min_level = np.exp(-100 / 20 * np.log(10)) b, a = butter_highpass(30, 16000, order=5) # Get the codes for each utterance and save the corresponding codes in a large pickle # List(Dict{'dys', 'ctrl'}) - numpy ndarray in the value part of the dict src_path = "/home/terbed/PROJECTS/DYS/DATA/UAS-subset/M05" trg_path = "/home/terbed/PROJECTS/DYS/DATA/UAS-subset/CM10" lo, hi = 50, 250 src_speaker = src_path.split("/")[-1] trg_speaker = trg_path.split("/")[-1] _, _, fnames = next(os.walk(src_path)) database = []
from numpy.random import RandomState from pysptk import sptk import librosa from utils import butter_highpass from utils import speaker_normalization from utils import pySTFT from hparams import hparams mel_basis = mel(hparams.sample_rate, hparams.fft_size, fmin=hparams.fmin, fmax=hparams.fmax, n_mels=hparams.num_mels).T min_level = np.exp(hparams.min_level_db / 20 * np.log(10)) b, a = butter_highpass(hparams.cutoff, hparams.sample_rate, order=hparams.order) def build_from_path(hparams, in_dir, out_dir, spk_emb_path, spk2gen_path, num_workers=16): executor = ProcessPoolExecutor(max_workers=num_workers) # load spk paths if hparams.used_spks is not None: spk_paths = [