def main():
    try:
        # user input for the path of the dataset
        filedir = input("enter the complete directory path ")
        filepath = input("enter the folder name")

        # load the files
        all_files = os.listdir(filedir)
        freq_max1, freq_max2, freq_max3, freq_max4, freq_max5 = cal_max_freq(
            all_files, filepath)
    except IOError:
        print(
            "you have entered either the wrong data directory path or filepath"
        )

    # load the model
    filename = "kmeanModel.npy"
    model = np.load(filename).item()

    # checking the iteration
    if (filepath == "1st_test/"):
        rhigh = 8
    else:
        rhigh = 4

    testlabels = []
    for i in range(0, rhigh):
        print("checking for the bearing", i + 1)
        result = pd.DataFrame()
        result['freq_max1'] = list((np.array(freq_max1))[:, i])
        result['freq_max2'] = list((np.array(freq_max2))[:, i])
        result['freq_max3'] = list((np.array(freq_max3))[:, i])
        result['freq_max4'] = list((np.array(freq_max4))[:, i])
        result['freq_max5'] = list((np.array(freq_max5))[:, i])

        X = result[[
            "freq_max1", "freq_max2", "freq_max3", "freq_max4", "freq_max5"
        ]]

        label = model.predict(X)
        labelfive = list(label[-100:]).count(5)
        labelsix = list(label[-100:]).count(6)
        labelseven = list(label[-100:]).count(7)
        totalfailur = labelfive + labelsix + labelseven  #+labelfour
        ratio = (totalfailur / 100) * 100
        if (ratio >= 25):
            print("bearing is suspected to fail")
        else:
            print("bearing is working in normal condition")

        testlabels.append(label[-100:])

    # ploting the labels
    plotlabels(testlabels)
    plt.show()
Example #2
0
def main():
    try:
        # user input for the path of the dataset
        filedir = input("enter the complete directory path ")
        filepath = input("enter the folder name")

        #load the files
        all_files = os.listdir(filedir)
        freq_max1,freq_max2,freq_max3,freq_max4,freq_max5 = cal_max_freq(all_files,filepath)
    except IOError:
        print("you have entered either the wrong data directory path or filepath")


    #load the model
    filename = "GMM_all.npy"
    model = np.load(filename).item()

    #checking the iteration
    if (filepath == "1st_test/"):
        rhigh = 8
    else:
        rhigh = 4

    print("for the testset", filepath)
    prediction_last_100 = []
    for i in range(0,rhigh):
        #making the dataframe
        X = create_dataframe(freq_max1,freq_max2,freq_max3,freq_max4,freq_max5,i)
        print("checking for the bearing",i+1)
        label = model.predict(X)
        check_two = list(label[-100:]).count(2)
        ratio = (check_two/100)*100
        print("prediction",ratio)
        if(ratio >= 50):
            print("bearing is suspected to fail")
        else:
            print("bearing is working in normal condition")

        prediction_last_100.append(label[-100:])

    plotlabels(prediction_last_100)
    plt.show()
    # reading all  the files from the testset1, and testset2
    filedir_testset1 = "Bearing Dataset/1st_test/"  #input("enter the complete directory path for the testset1 ")""
    filedir_testset2 = "Bearing Dataset/2nd_test/"  #input("enter the complete directory path for the testset2 ")
    all_files_testset1 = os.listdir(filedir_testset1)
    all_files_testset2 = os.listdir(filedir_testset2)

    # relative path of the dataset, after the current working directory

    path_testset2 = "Bearing Dataset/2nd_test/"
    path_testset1 = "Bearing Dataset/1st_test/"

except IOError:
    print(
        "you have entered either the wrong data directory path for either testset1 or testset2"
    )
testset1_freq_max1, testset1_freq_max2, testset1_freq_max3, testset1_freq_max4, testset1_freq_max5 = cal_max_freq(
    all_files_testset1, path_testset1)
testset2_freq_max1, testset2_freq_max2, testset2_freq_max3, testset2_freq_max4, testset2_freq_max5 = cal_max_freq(
    all_files_testset2, path_testset2)
# calculating the labels for the bearing which is failed
testset1_labelF = cal_Labels(len(all_files_testset1))
testset2_labelF = cal_Labels(len(all_files_testset2))

# creatine a datafRame for which bearing has failed
result1 = create_dataframe(testset1_freq_max1, testset1_freq_max2,
                           testset1_freq_max3, testset1_freq_max4,
                           testset1_freq_max5, 1)
result1['labels'] = testset1_labelF

result2 = create_dataframe(testset2_freq_max1, testset2_freq_max2,
                           testset2_freq_max3, testset2_freq_max4,
                           testset2_freq_max5, 0)
import os


def reshapelist(lst):
    return (list(map(list, zip(*lst))))


try:
    # user input for the path of the dataset
    filedir = input("enter the complete directory path to 1st_test/2nd_test ")
    filepath = input("enter the folder name 1st_test/2nd_test: ")

    #load the files
    all_files = os.listdir(filedir)
    freq_max1, freq_max2, freq_max3, freq_max4, freq_max5 = cal_max_freq(
        all_files, filepath)
except IOError:
    print("you have entered either the wrong data directory path or filepath")

freq = [freq_max1, freq_max2, freq_max3, freq_max4, freq_max5]

max_type = input("enter the max type in range 1-5")
max_type = int(max_type)
if (max_type >= 1 and max_type <= 5):
    freqmax = reshapelist(freq[max_type - 1])
else:
    print("you have enter the max type range except 1-5.")

# plot the figure
fig = plt.figure()
plotlabels(freqmax)