def train(model, head, iterator, optimizer, criterion):

    epoch_loss = 0
    epoch_acc = 0

    model.train()

    for batch in tqdm(iterator, desc='Training...'):

        text = batch['tokens']
        text_lengths = batch['tokens_lengths']
        label = batch['label']

        optimizer.zero_grad()

        output, hidden = model(text, text_lengths)
        prediction = head(output, hidden)

        loss = criterion(prediction, label)

        acc = categorical_accuracy(prediction, label)

        loss.backward()

        optimizer.step()

        epoch_loss += loss.item()
        epoch_acc += acc.item()

    return epoch_loss / len(iterator), epoch_acc / len(iterator)
def evaluate(model, head, iterator, criterion):

    epoch_loss = 0
    epoch_acc = 0

    model.eval()

    with torch.no_grad():

        for batch in tqdm(iterator, desc='Evaluating...'):

            text = batch['tokens']
            text_lengths = batch['tokens_lengths']
            label = batch['label']

            output, hidden = model(text, text_lengths)
            prediction = head(output, hidden)

            loss = criterion(prediction, label)

            acc = categorical_accuracy(prediction, label)

            epoch_loss += loss.item()
            epoch_acc += acc.item()

    return epoch_loss / len(iterator), epoch_acc / len(iterator)
Example #3
0
def eval_fn(data_loader, model, device):
    model.eval()
    eval_loss, eval_acc = 0.0, 0.0
    fin_targets = []
    fin_outputs = []
    with torch.no_grad():
        for bi, d in tqdm(enumerate(data_loader), total=len(data_loader)):
            ids = d["ids"]
            token_type_ids = d["token_type_ids"]
            mask = d["mask"]
            targets = d["targets"]

            ids = ids.to(device, dtype=torch.long)
            token_type_ids = token_type_ids.to(device, dtype=torch.long)
            mask = mask.to(device, dtype=torch.long)
            targets = targets.to(device, dtype=torch.long)

            outputs = model(
                ids=ids,
                mask=mask,
                token_type_ids=token_type_ids
            )
            loss = loss_fn(outputs, targets)
            eval_loss += loss.item()
            pred_labels = torch.argmax(outputs, axis=1)
            # (pred_labels == targets).sum().item()
            eval_acc += categorical_accuracy(outputs, targets).item()
            fin_targets.extend(targets.cpu().detach().numpy().tolist())
            fin_outputs.extend(torch.argmax(
                outputs, dim=1).cpu().detach().numpy().tolist())
    eval_loss /= len(data_loader)
    eval_acc /= len(data_loader)
    return fin_outputs, fin_targets, eval_loss, eval_acc
Example #4
0
def train_fn(data_loader, model, optimizer, device, scheduler):
    model.train()
    train_loss, train_acc = 0.0, 0.0

    for bi, d in tqdm(enumerate(data_loader), total=len(data_loader)):
        ids = d["ids"]
        token_type_ids = d["token_type_ids"]
        mask = d["mask"]
        targets = d["targets"]

        ids = ids.to(device, dtype=torch.long)
        token_type_ids = token_type_ids.to(device, dtype=torch.long)
        mask = mask.to(device, dtype=torch.long)
        targets = targets.to(device, dtype=torch.long)
        
        optimizer.zero_grad()
        outputs = model(
            ids=ids,
            mask=mask,
            token_type_ids=token_type_ids
        )

        loss = loss_fn(outputs, targets)
        loss.backward()
        
        optimizer.step()
        scheduler.step()
        train_loss += loss.item()
        pred_labels = torch.argmax(outputs, dim=1)
        # (pred_labels == targets).sum().item()
        train_acc += categorical_accuracy(outputs, targets).item()

    train_loss /= len(data_loader)
    train_acc /= len(data_loader)
    return train_loss, train_acc
Example #5
0
def test(epoch, model, dataloader):
    model.eval()

    for i, (X, y) in enumerate(dataloader):
        target = utils.one_hot(y, model.final_caps.n_unit)

        X, target = Variable(X), Variable(target)
        if args.use_gpu:
            X, target = X.cuda(), target.cuda()

        y_hat = model(X)
        loss = model.loss(y_hat, target)

        preds = model.capsule_prediction(y_hat)
        acc = utils.categorical_accuracy(y.float(), preds.cpu().data)
        logger.log(epoch,
                   i,
                   len(dataloader.dataset),
                   start + '_TEST',
                   loss=loss.data[0],
                   acc=acc)
Example #6
0
def train(epoch, model, dataloader, optim, decoder, decoder_optim):
    model.train()

    decoder_criterion = nn.MSELoss()

    for ix, (X, y) in enumerate(dataloader):
        target = utils.one_hot(y, model.final_caps.n_unit)

        X, target = Variable(X), Variable(target)
        if args.use_gpu:
            X, target = X.cuda(), target.cuda()

        y_hat = model(X)
        loss = model.loss(y_hat, target)
        loss.backward()
        optim.step()
        optim.zero_grad()

        # train the decoder
        imgs = decoder(y_hat.detach())
        decoder_loss = decoder_criterion(imgs, X)
        decoder_loss.backward()
        decoder_optim.step()
        decoder_optim.zero_grad()

        if ix % args.log_interval == 0:
            preds = model.capsule_prediction(y_hat)
            acc = utils.categorical_accuracy(y.float(), preds.cpu().data)
            logger.log(epoch,
                       ix,
                       len(dataloader.dataset),
                       start + '_TRAIN',
                       loss=loss.data[0],
                       acc=acc,
                       decoder_loss=decoder_loss.data[0])

            logger.images('generated_fmnist', imgs.data.cpu())

    return loss.data[0]