Example #1
0
def mem_extend(mem, compustate, op, start, sz):
    if sz:
        newsize = start + sz
        if len(mem) < utils.ceil32(newsize):
            m_extend = utils.ceil32(newsize) - len(mem)
            memfee = opcodes.GMEMORY * (m_extend / 32)
            if compustate.gas < memfee:
                compustate.gas = 0
                return False
            compustate.gas -= memfee
            mem.extend([0] * m_extend)
    return True
Example #2
0
def data_copy(compustate, size):
    if size:
        copyfee = opcodes.GCOPY * utils.ceil32(size) / 32
        if compustate.gas < copyfee:
            compustate.gas = 0
            return False
        compustate.gas -= copyfee
    return True
Example #3
0
def proc_identity(ext, msg):
    print 'identity proc', msg.gas
    OP_GAS = 1 + (utils.ceil32(msg.data.size) / 32)
    gas_cost = OP_GAS
    if msg.gas < gas_cost:
        return 0, 0, []
    o = [0] * msg.data.size
    msg.data.extract_copy(o, 0, 0, len(o))
    return 1, msg.gas - gas_cost, o
Example #4
0
def proc_ripemd160(ext, msg):
    print 'ripemd160 proc', msg.gas
    OP_GAS = 50 + (utils.ceil32(msg.data.size) / 32) * 50
    gas_cost = OP_GAS
    if msg.gas < gas_cost:
        return 0, 0, []
    d = msg.data.extract_all()
    o = [0] * 12 + [ord(x) for x in bitcoin.ripemd.RIPEMD160(d).digest()]
    return 1, msg.gas - gas_cost, o
Example #5
0
def proc_sha256(ext, msg):
    print 'sha256 proc', msg.gas
    OP_GAS = 50 + (utils.ceil32(msg.data.size) / 32) * 50
    gas_cost = OP_GAS
    if msg.gas < gas_cost:
        return 0, 0, []
    d = msg.data.extract_all()
    o = [ord(x) for x in bitcoin.bin_sha256(d)]
    return 1, msg.gas - gas_cost, o
Example #6
0
def proc_identity(ext, msg):
    print 'identity proc', msg.gas
    OP_GAS = 1 + (utils.ceil32(msg.data.size) / 32)
    gas_cost = OP_GAS
    if msg.gas < gas_cost:
        return 0, 0, []
    o = [0] * msg.data.size
    msg.data.extract_copy(o, 0, 0, len(o))
    return 1, msg.gas - gas_cost, o
Example #7
0
def proc_ripemd160(ext, msg):
    print 'ripemd160 proc', msg.gas
    OP_GAS = 50 + (utils.ceil32(msg.data.size) / 32) * 50
    gas_cost = OP_GAS
    if msg.gas < gas_cost:
        return 0, 0, []
    d = msg.data.extract_all()
    o = [0] * 12 + [ord(x) for x in bitcoin.ripemd.RIPEMD160(d).digest()]
    return 1, msg.gas - gas_cost, o
Example #8
0
def proc_sha256(ext, msg):
    print 'sha256 proc', msg.gas
    OP_GAS = 50 + (utils.ceil32(msg.data.size) / 32) * 50
    gas_cost = OP_GAS
    if msg.gas < gas_cost:
        return 0, 0, []
    d = msg.data.extract_all()
    o = [ord(x) for x in bitcoin.bin_sha256(d)]
    return 1, msg.gas - gas_cost, o
Example #9
0
def dec(typ, arg):
    base, sub, arrlist = typ
    sz = get_size(typ)
    # Dynamic-sized strings are encoded as <len(str)> + <str>
    if base in ('string', 'bytes') and not sub:
        L = big_endian_to_int(arg[:32])
        assert len(
            arg[32:]) == ceil32(L), "Wrong data size for string/bytes object"
        return arg[32:][:L]
    # Dynamic-sized arrays
    elif sz is None:
        L = big_endian_to_int(arg[:32])
        subtyp = base, sub, arrlist[:-1]
        subsize = get_size(subtyp)
        # If children are dynamic, use the head/tail mechanism. Fortunately,
        # here the code is simpler since we do not have to worry about
        # mixed dynamic and static children, as we do in the top-level multi-arg
        # case
        if subsize is None:
            assert len(arg) >= 32 + 32 * L, "Not enough data for head"
            start_positions = [
                big_endian_to_int(arg[32 + 32 * i:64 + 32 * i])
                for i in range(L)
            ] + [len(arg)]
            outs = [
                arg[start_positions[i]:start_positions[i + 1]]
                for i in range(L)
            ]
            return [dec(subtyp, out) for out in outs]
        # If children are static, then grab the data slice for each one and
        # sequentially decode them manually
        else:
            return [
                dec(subtyp, arg[32 + subsize * i:32 + subsize * (i + 1)])
                for i in range(L)
            ]
    # Static-sized arrays: decode piece-by-piece
    elif len(arrlist):
        L = arrlist[-1][0]
        subtyp = base, sub, arrlist[:-1]
        subsize = get_size(subtyp)
        return [
            dec(subtyp, arg[subsize * i:subsize * (i + 1)]) for i in range(L)
        ]
    else:
        return decode_single(typ, arg)
Example #10
0
def enc(typ, arg):
    base, sub, arrlist = typ
    sz = get_size(typ)
    # Encode dynamic-sized strings as <len(str)> + <str>
    if base in ('string', 'bytes') and not sub:
        assert isinstance(arg, (str, bytes, utils.unicode)), \
            "Expecting a string"
        return enc(lentyp, len(arg)) + \
            utils.to_string(arg) + \
            b'\x00' * (utils.ceil32(len(arg)) - len(arg))
    # Encode dynamic-sized lists via the head/tail mechanism described in
    # https://github.com/ethereum/wiki/wiki/Proposal-for-new-ABI-value-encoding
    elif sz is None:
        assert isinstance(arg, list), \
            "Expecting a list argument"
        subtyp = base, sub, arrlist[:-1]
        subsize = get_size(subtyp)
        myhead, mytail = b'', b''
        if arrlist[-1] == []:
            myhead += enc(lentyp, len(arg))
        else:
            assert len(arg) == arrlist[-1][0], \
                "Wrong array size: found %d, expecting %d" % \
                (len(arg), arrlist[-1][0])
        for i in range(len(arg)):
            if subsize is None:
                myhead += enc(lentyp, 32 * len(arg) + len(mytail))
                mytail += enc(subtyp, arg[i])
            else:
                myhead += enc(subtyp, arg[i])
        return myhead + mytail
    # Encode static-sized lists via sequential packing
    else:
        if arrlist == []:
            return utils.to_string(encode_single(typ, arg))
        else:
            subtyp = base, sub, arrlist[:-1]
            o = b''
            for x in arg:
                o += enc(subtyp, x)
            return o
Example #11
0
def enc(typ, arg):
    base, sub, arrlist = typ
    sz = get_size(typ)
    # Encode dynamic-sized strings as <len(str)> + <str>
    if base in ('string', 'bytes') and not sub:
        assert isinstance(arg, (str, bytes, utils.unicode)), \
            "Expecting a string"
        return enc(lentyp, len(arg)) + \
            utils.to_string(arg) + \
            b'\x00' * (utils.ceil32(len(arg)) - len(arg))
    # Encode dynamic-sized lists via the head/tail mechanism described in
    # https://github.com/ethereum/wiki/wiki/Proposal-for-new-ABI-value-encoding
    elif sz is None:
        assert isinstance(arg, list), \
            "Expecting a list argument"
        subtyp = base, sub, arrlist[:-1]
        subsize = get_size(subtyp)
        myhead, mytail = b'', b''
        if arrlist[-1] == []:
            myhead += enc(lentyp, len(arg))
        else:
            assert len(arg) == arrlist[-1][0], \
                "Wrong array size: found %d, expecting %d" % \
                (len(arg), arrlist[-1][0])
        for i in range(len(arg)):
            if subsize is None:
                myhead += enc(lentyp, 32 * len(arg) + len(mytail))
                mytail += enc(subtyp, arg[i])
            else:
                myhead += enc(subtyp, arg[i])
        return myhead + mytail
    # Encode static-sized lists via sequential packing
    else:
        if arrlist == []:
            return utils.to_string(encode_single(typ, arg))
        else:
            subtyp = base, sub, arrlist[:-1]
            o = b''
            for x in arg:
                o += enc(subtyp, x)
            return o
Example #12
0
def dec(typ, arg):
    base, sub, arrlist = typ
    sz = get_size(typ)
    # Dynamic-sized strings are encoded as <len(str)> + <str>
    if base in ('string', 'bytes') and not sub:
        L = big_endian_to_int(arg[:32])
        assert len(arg[32:]) == ceil32(L), "Wrong data size for string/bytes object"
        return arg[32:][:L]
    # Dynamic-sized arrays
    elif sz is None:
        L = big_endian_to_int(arg[:32])
        subtyp = base, sub, arrlist[:-1]
        subsize = get_size(subtyp)
        # If children are dynamic, use the head/tail mechanism. Fortunately,
        # here the code is simpler since we do not have to worry about
        # mixed dynamic and static children, as we do in the top-level multi-arg
        # case
        if subsize is None:
            assert len(arg) >= 32 + 32 * L, "Not enough data for head"
            start_positions = [big_endian_to_int(arg[32 + 32 * i: 64 + 32 * i])
                               for i in range(L)] + [len(arg)]
            outs = [arg[start_positions[i]: start_positions[i + 1]]
                    for i in range(L)]
            return [dec(subtyp, out) for out in outs]
        # If children are static, then grab the data slice for each one and
        # sequentially decode them manually
        else:
            return [dec(subtyp, arg[32 + subsize * i: 32 + subsize * (i + 1)])
                    for i in range(L)]
    # Static-sized arrays: decode piece-by-piece
    elif len(arrlist):
        L = arrlist[-1][0]
        subtyp = base, sub, arrlist[:-1]
        subsize = get_size(subtyp)
        return [dec(subtyp, arg[subsize * i:subsize * (i + 1)])
                for i in range(L)]
    else:
        return decode_single(typ, arg)
Example #13
0
def encode_single(typ, arg):
    base, sub, _ = typ
    # Unsigned integers: uint<sz>
    if base == 'uint':
        sub = int(sub)
        i = decint(arg, False)

        if not 0 <= i < 2 ** sub:
            raise ValueOutOfBounds(repr(arg))
        return zpad(encode_int(i), 32)
    # bool: int<sz>
    elif base == 'bool':
        assert isinstance(arg, bool)
        return zpad(encode_int(int(arg)), 32)
    # Signed integers: int<sz>
    elif base == 'int':
        sub = int(sub)
        i = decint(arg, True)
        if not -2 ** (sub - 1) <= i < 2 ** (sub - 1):
            raise ValueOutOfBounds(repr(arg))
        return zpad(encode_int(i % 2 ** sub), 32)
    # Unsigned reals: ureal<high>x<low>
    elif base == 'ureal':
        high, low = [int(x) for x in sub.split('x')]
        if not 0 <= arg < 2 ** high:
            raise ValueOutOfBounds(repr(arg))
        return zpad(encode_int(int(arg * 2 ** low)), 32)
    # Signed reals: real<high>x<low>
    elif base == 'real':
        high, low = [int(x) for x in sub.split('x')]
        if not -2 ** (high - 1) <= arg < 2 ** (high - 1):
            raise ValueOutOfBounds(repr(arg))
        i = int(arg * 2 ** low)
        return zpad(encode_int(i % 2 ** (high + low)), 32)
    # Strings
    elif base == 'string' or base == 'bytes':
        if not is_string(arg):
            raise EncodingError("Expecting string: %r" % arg)
        # Fixed length: string<sz>
        if len(sub):
            assert int(sub) <= 32
            assert len(arg) <= int(sub)
            return arg + b'\x00' * (32 - len(arg))
        # Variable length: string
        else:
            return zpad(encode_int(len(arg)), 32) + \
                arg + \
                b'\x00' * (utils.ceil32(len(arg)) - len(arg))
    # Hashes: hash<sz>
    elif base == 'hash':
        if not (int(sub) and int(sub) <= 32):
            raise EncodingError("too long: %r" % arg)
        if isnumeric(arg):
            return zpad(encode_int(arg), 32)
        elif len(arg) == int(sub):
            return zpad(arg, 32)
        elif len(arg) == int(sub) * 2:
            return zpad(decode_hex(arg), 32)
        else:
            raise EncodingError("Could not parse hash: %r" % arg)
    # Addresses: address (== hash160)
    elif base == 'address':
        assert sub == ''
        if isnumeric(arg):
            return zpad(encode_int(arg), 32)
        elif len(arg) == 20:
            return zpad(arg, 32)
        elif len(arg) == 40:
            return zpad(decode_hex(arg), 32)
        elif len(arg) == 42 and arg[:2] in {'0x', b'0x'}:
            return zpad(decode_hex(arg[2:]), 32)
        else:
            raise EncodingError("Could not parse address: %r" % arg)
    raise EncodingError("Unhandled type: %r %r" % (base, sub))
Example #14
0
def vm_execute(ext, msg, code):
    # precompute trace flag
    # if we trace vm, we're in slow mode anyway
    trace_vm = log_vm_op.is_active('trace')

    compustate = Compustate(gas=msg.gas)
    stk = compustate.stack
    mem = compustate.memory

    if code in code_cache:
        processed_code = code_cache[code]
    else:
        processed_code = preprocess_code(code)
        code_cache[code] = processed_code

    codelen = len(processed_code)

    while 1:
        if compustate.pc >= codelen:
            return peaceful_exit('CODE OUT OF RANGE', compustate.gas, [])

        op, in_args, out_args, fee, opcode, pushval = \
            processed_code[compustate.pc]

        # out of gas error
        if fee > compustate.gas:
            return vm_exception('OUT OF GAS')

        # empty stack error
        if in_args > len(compustate.stack):
            return vm_exception('INSUFFICIENT STACK',
                                op=op,
                                needed=str(in_args),
                                available=str(len(compustate.stack)))

        # Apply operation
        compustate.gas -= fee
        compustate.pc += 1

        if trace_vm:
            """
            This diverges from normal logging, as we use the logging namespace
            only to decide which features get logged in 'eth.vm.op'
            i.e. tracing can not be activated by activating a sub like 'eth.vm.op.stack'
            """
            trace_data = {}
            if log_vm_op_stack.is_active():
                trace_data['stack'] = map(str, list(compustate.stack))
            if log_vm_op_memory.is_active():
                trace_data['memory'] = \
                    ''.join([chr(x).encode('hex') for x in compustate.memory])
            if log_vm_op_storage.is_active():
                trace_data['storage'] = ext.log_storage(msg.to)
            trace_data['gas'] = str(compustate.gas + fee)
            trace_data['pc'] = str(compustate.pc - 1)
            trace_data['op'] = op
            if op[:4] == 'PUSH':
                trace_data['pushvalue'] = pushval

            log_vm_op.trace('vm', **trace_data)

        # Invalid operation
        if op == 'INVALID':
            return vm_exception('INVALID OP', opcode=opcode)

        # Valid operations
        if opcode < 0x10:
            if op == 'STOP':
                return peaceful_exit('STOP', compustate.gas, [])
            elif op == 'ADD':
                stk.append((stk.pop() + stk.pop()) & TT256M1)
            elif op == 'SUB':
                stk.append((stk.pop() - stk.pop()) & TT256M1)
            elif op == 'MUL':
                stk.append((stk.pop() * stk.pop()) & TT256M1)
            elif op == 'DIV':
                s0, s1 = stk.pop(), stk.pop()
                stk.append(0 if s1 == 0 else s0 / s1)
            elif op == 'MOD':
                s0, s1 = stk.pop(), stk.pop()
                stk.append(0 if s1 == 0 else s0 % s1)
            elif op == 'SDIV':
                s0, s1 = utils.to_signed(stk.pop()), utils.to_signed(stk.pop())
                stk.append(0 if s1 == 0 else (abs(s0) // abs(s1) *
                                              (-1 if s0 * s1 < 0 else 1))
                           & TT256M1)
            elif op == 'SMOD':
                s0, s1 = utils.to_signed(stk.pop()), utils.to_signed(stk.pop())
                stk.append(0 if s1 == 0 else (abs(s0) % abs(s1) *
                                              (-1 if s0 < 0 else 1)) & TT256M1)
            elif op == 'ADDMOD':
                s0, s1, s2 = stk.pop(), stk.pop(), stk.pop()
                stk.append((s0 + s1) % s2 if s2 else 0)
            elif op == 'MULMOD':
                s0, s1, s2 = stk.pop(), stk.pop(), stk.pop()
                stk.append((s0 * s1) % s2 if s2 else 0)
            elif op == 'EXP':
                base, exponent = stk.pop(), stk.pop()
                # fee for exponent is dependent on its bytes
                # calc n bytes to represent exponent
                nbytes = len(utils.encode_int(exponent))
                expfee = nbytes * opcodes.GEXPONENTBYTE
                if compustate.gas < expfee:
                    compustate.gas = 0
                    return vm_exception('OOG EXPONENT')
                compustate.gas -= expfee
                stk.append(pow(base, exponent, TT256))
            elif op == 'SIGNEXTEND':
                s0, s1 = stk.pop(), stk.pop()
                if s0 <= 31:
                    testbit = s0 * 8 + 7
                    if s1 & (1 << testbit):
                        stk.append(s1 | (TT256 - (1 << testbit)))
                    else:
                        stk.append(s1 & ((1 << testbit) - 1))
                else:
                    stk.append(s1)
        elif opcode < 0x20:
            if op == 'LT':
                stk.append(1 if stk.pop() < stk.pop() else 0)
            elif op == 'GT':
                stk.append(1 if stk.pop() > stk.pop() else 0)
            elif op == 'SLT':
                s0, s1 = utils.to_signed(stk.pop()), utils.to_signed(stk.pop())
                stk.append(1 if s0 < s1 else 0)
            elif op == 'SGT':
                s0, s1 = utils.to_signed(stk.pop()), utils.to_signed(stk.pop())
                stk.append(1 if s0 > s1 else 0)
            elif op == 'EQ':
                stk.append(1 if stk.pop() == stk.pop() else 0)
            elif op == 'ISZERO':
                stk.append(0 if stk.pop() else 1)
            elif op == 'AND':
                stk.append(stk.pop() & stk.pop())
            elif op == 'OR':
                stk.append(stk.pop() | stk.pop())
            elif op == 'XOR':
                stk.append(stk.pop() ^ stk.pop())
            elif op == 'NOT':
                stk.append(TT256M1 - stk.pop())
            elif op == 'BYTE':
                s0, s1 = stk.pop(), stk.pop()
                if s0 >= 32:
                    stk.append(0)
                else:
                    stk.append((s1 / 256**(31 - s0)) % 256)
        elif opcode < 0x40:
            if op == 'SHA3':
                s0, s1 = stk.pop(), stk.pop()
                compustate.gas -= 10 * (utils.ceil32(s1) / 32)
                if compustate.gas < 0:
                    return vm_exception('OOG PAYING FOR SHA3')
                if not mem_extend(mem, compustate, op, s0, s1):
                    return vm_exception('OOG EXTENDING MEMORY')
                data = ''.join(map(chr, mem[s0:s0 + s1]))
                stk.append(utils.big_endian_to_int(utils.sha3(data)))
            elif op == 'ADDRESS':
                stk.append(utils.coerce_to_int(msg.to))
            elif op == 'BALANCE':
                addr = utils.coerce_addr_to_hex(stk.pop() % 2**160)
                stk.append(ext.get_balance(addr))
            elif op == 'ORIGIN':
                stk.append(utils.coerce_to_int(ext.tx_origin))
            elif op == 'CALLER':
                stk.append(utils.coerce_to_int(msg.sender))
            elif op == 'CALLVALUE':
                stk.append(msg.value)
            elif op == 'CALLDATALOAD':
                stk.append(msg.data.extract32(stk.pop()))
            elif op == 'CALLDATASIZE':
                stk.append(msg.data.size)
            elif op == 'CALLDATACOPY':
                mstart, dstart, size = stk.pop(), stk.pop(), stk.pop()
                if not mem_extend(mem, compustate, op, mstart, size):
                    return vm_exception('OOG EXTENDING MEMORY')
                if not data_copy(compustate, size):
                    return vm_exception('OOG COPY DATA')
                msg.data.extract_copy(mem, mstart, dstart, size)
            elif op == 'CODESIZE':
                stk.append(len(processed_code))
            elif op == 'CODECOPY':
                start, s1, size = stk.pop(), stk.pop(), stk.pop()
                if not mem_extend(mem, compustate, op, start, size):
                    return vm_exception('OOG EXTENDING MEMORY')
                if not data_copy(compustate, size):
                    return vm_exception('OOG COPY DATA')
                for i in range(size):
                    if s1 + i < len(processed_code):
                        mem[start + i] = processed_code[s1 + i][4]
                    else:
                        mem[start + i] = 0
            elif op == 'GASPRICE':
                stk.append(ext.tx_gasprice)
            elif op == 'EXTCODESIZE':
                addr = utils.coerce_addr_to_hex(stk.pop() % 2**160)
                stk.append(len(ext.get_code(addr) or ''))
            elif op == 'EXTCODECOPY':
                addr = utils.coerce_addr_to_hex(stk.pop() % 2**160)
                start, s2, size = stk.pop(), stk.pop(), stk.pop()
                extcode = ext.get_code(addr) or ''
                if not mem_extend(mem, compustate, op, start, size):
                    return vm_exception('OOG EXTENDING MEMORY')
                if not data_copy(compustate, size):
                    return vm_exception('OOG COPY DATA')
                for i in range(size):
                    if s2 + i < len(extcode):
                        mem[start + i] = ord(extcode[s2 + i])
                    else:
                        mem[start + i] = 0
        elif opcode < 0x50:
            if op == 'BLOCKHASH':
                stk.append(utils.big_endian_to_int(ext.block_hash(stk.pop())))
            elif op == 'COINBASE':
                stk.append(
                    utils.big_endian_to_int(ext.block_coinbase.decode('hex')))
            elif op == 'TIMESTAMP':
                stk.append(ext.block_timestamp)
            elif op == 'NUMBER':
                stk.append(ext.block_number)
            elif op == 'DIFFICULTY':
                stk.append(ext.block_difficulty)
            elif op == 'GASLIMIT':
                stk.append(ext.block_gas_limit)
        elif opcode < 0x60:
            if op == 'POP':
                stk.pop()
            elif op == 'MLOAD':
                s0 = stk.pop()
                if not mem_extend(mem, compustate, op, s0, 32):
                    return vm_exception('OOG EXTENDING MEMORY')
                data = ''.join(map(chr, mem[s0:s0 + 32]))
                stk.append(utils.big_endian_to_int(data))
            elif op == 'MSTORE':
                s0, s1 = stk.pop(), stk.pop()
                if not mem_extend(mem, compustate, op, s0, 32):
                    return vm_exception('OOG EXTENDING MEMORY')
                v = s1
                for i in range(31, -1, -1):
                    mem[s0 + i] = v % 256
                    v /= 256
            elif op == 'MSTORE8':
                s0, s1 = stk.pop(), stk.pop()
                if not mem_extend(mem, compustate, op, s0, 1):
                    return vm_exception('OOG EXTENDING MEMORY')
                mem[s0] = s1 % 256
            elif op == 'SLOAD':
                stk.append(ext.get_storage_data(msg.to, stk.pop()))
            elif op == 'SSTORE':
                s0, s1 = stk.pop(), stk.pop()
                if ext.get_storage_data(msg.to, s0):
                    gascost = opcodes.GSTORAGEMOD if s1 else opcodes.GSTORAGEKILL
                else:
                    gascost = opcodes.GSTORAGEADD if s1 else opcodes.GSTORAGEMOD
                if compustate.gas < gascost:
                    return vm_exception('OUT OF GAS')
                compustate.gas -= max(gascost, 0)
                ext.add_refund(max(
                    -gascost, 0))  # adds neg gascost as a refund if below zero
                ext.set_storage_data(msg.to, s0, s1)
            elif op == 'JUMP':
                compustate.pc = stk.pop()
                opnew = processed_code[compustate.pc][0] if \
                    compustate.pc < len(processed_code) else 'STOP'
                if opnew != 'JUMPDEST':
                    return vm_exception('BAD JUMPDEST')
            elif op == 'JUMPI':
                s0, s1 = stk.pop(), stk.pop()
                if s1:
                    compustate.pc = s0
                    opnew = processed_code[compustate.pc][0] if \
                        compustate.pc < len(processed_code) else 'STOP'
                    if opnew != 'JUMPDEST':
                        return vm_exception('BAD JUMPDEST')
            elif op == 'PC':
                stk.append(compustate.pc - 1)
            elif op == 'MSIZE':
                stk.append(len(mem))
            elif op == 'GAS':
                stk.append(compustate.gas)  # AFTER subtracting cost 1
        elif op[:4] == 'PUSH':
            pushnum = int(op[4:])
            compustate.pc += pushnum
            stk.append(pushval)
        elif op[:3] == 'DUP':
            depth = int(op[3:])
            stk.append(stk[-depth])
        elif op[:4] == 'SWAP':
            depth = int(op[4:])
            temp = stk[-depth - 1]
            stk[-depth - 1] = stk[-1]
            stk[-1] = temp

        elif op[:3] == 'LOG':
            """
            0xa0 ... 0xa4, 32/64/96/128/160 + len(data) gas
            a. Opcodes LOG0...LOG4 are added, takes 2-6 stack arguments
                    MEMSTART MEMSZ (TOPIC1) (TOPIC2) (TOPIC3) (TOPIC4)
            b. Logs are kept track of during tx execution exactly the same way as suicides
               (except as an ordered list, not a set).
               Each log is in the form [address, [topic1, ... ], data] where:
               * address is what the ADDRESS opcode would output
               * data is mem[MEMSTART: MEMSTART + MEMSZ]
               * topics are as provided by the opcode
            c. The ordered list of logs in the transaction are expressed as [log0, log1, ..., logN].
            """
            depth = int(op[3:])
            mstart, msz = stk.pop(), stk.pop()
            topics = [stk.pop() for x in range(depth)]
            compustate.gas -= msz
            if not mem_extend(mem, compustate, op, mstart, msz):
                return vm_exception('OOG EXTENDING MEMORY')
            data = ''.join(map(chr, mem[mstart:mstart + msz]))
            ext.log(msg.to, topics, data)
            log_log.trace('LOG', to=msg.to, topics=topics, data=map(ord, data))
            print('LOG', msg.to, topics, map(ord, data))

        elif op == 'CREATE':
            value, mstart, msz = stk.pop(), stk.pop(), stk.pop()
            if not mem_extend(mem, compustate, op, mstart, msz):
                return vm_exception('OOG EXTENDING MEMORY')
            if ext.get_balance(msg.to) >= value and msg.depth < 1024:
                cd = CallData(mem, mstart, msz)
                create_msg = Message(msg.to, '', value, compustate.gas, cd,
                                     msg.depth + 1)
                o, gas, addr = ext.create(create_msg)
                if o:
                    stk.append(utils.coerce_to_int(addr))
                    compustate.gas = gas
                else:
                    stk.append(0)
                    compustate.gas = 0
            else:
                stk.append(0)
        elif op == 'CALL':
            gas, to, value, meminstart, meminsz, memoutstart, memoutsz = \
                stk.pop(), stk.pop(), stk.pop(), stk.pop(), stk.pop(), stk.pop(), stk.pop()
            if not mem_extend(mem, compustate, op, meminstart, meminsz) or \
                    not mem_extend(mem, compustate, op, memoutstart, memoutsz):
                return vm_exception('OOG EXTENDING MEMORY')
            if compustate.gas < gas:
                return vm_exception('OUT OF GAS')
            if ext.get_balance(msg.to) >= value and msg.depth < 1024:
                compustate.gas -= gas
                to = utils.encode_int(to)
                to = (('\x00' * (32 - len(to))) + to)[12:].encode('hex')
                cd = CallData(mem, meminstart, meminsz)
                call_msg = Message(msg.to, to, value, gas, cd, msg.depth + 1)
                result, gas, data = ext.call(call_msg)
                if result == 0:
                    stk.append(0)
                else:
                    stk.append(1)
                    compustate.gas += gas
                    for i in range(min(len(data), memoutsz)):
                        mem[memoutstart + i] = data[i]
            else:
                stk.append(0)
        elif op == 'CALLCODE':
            gas, to, value, meminstart, meminsz, memoutstart, memoutsz = \
                stk.pop(), stk.pop(), stk.pop(), stk.pop(), stk.pop(), stk.pop(), stk.pop()
            if not mem_extend(mem, compustate, op, meminstart, meminsz) or \
                    not mem_extend(mem, compustate, op, memoutstart, memoutsz):
                return vm_exception('OOG EXTENDING MEMORY')
            if compustate.gas < gas:
                return vm_exception('OUT OF GAS')
            if ext.get_balance(msg.to) >= value and msg.depth < 1024:
                compustate.gas -= gas
                to = utils.encode_int(to)
                to = (('\x00' * (32 - len(to))) + to)[12:].encode('hex')
                cd = CallData(mem, meminstart, meminsz)
                call_msg = Message(msg.to, msg.to, value, gas, cd,
                                   msg.depth + 1)
                result, gas, data = ext.sendmsg(call_msg, ext.get_code(to))
                if result == 0:
                    stk.append(0)
                else:
                    stk.append(1)
                    compustate.gas += gas
                    for i in range(min(len(data), memoutsz)):
                        mem[memoutstart + i] = data[i]
            else:
                stk.append(0)
        elif op == 'RETURN':
            s0, s1 = stk.pop(), stk.pop()
            if not mem_extend(mem, compustate, op, s0, s1):
                return vm_exception('OOG EXTENDING MEMORY')
            return peaceful_exit('RETURN', compustate.gas, mem[s0:s0 + s1])
        elif op == 'SUICIDE':
            to = utils.encode_int(stk.pop())
            to = (('\x00' * (32 - len(to))) + to)[12:].encode('hex')
            xfer = ext.get_balance(msg.to)
            ext.set_balance(msg.to, 0)
            ext.set_balance(to, ext.get_balance(to) + xfer)
            ext.add_suicide(msg.to)
            return 1, compustate.gas, []
Example #15
0
def encode_single(typ, arg):
    base, sub, _ = typ
    # Unsigned integers: uint<sz>
    if base == 'uint':
        sub = int(sub)
        i = decint(arg, False)

        if not 0 <= i < 2**sub:
            raise ValueOutOfBounds(repr(arg))
        return zpad(encode_int(i), 32)
    # bool: int<sz>
    elif base == 'bool':
        assert isinstance(arg, bool)
        return zpad(encode_int(int(arg)), 32)
    # Signed integers: int<sz>
    elif base == 'int':
        sub = int(sub)
        i = decint(arg, True)
        if not -2**(sub - 1) <= i < 2**(sub - 1):
            raise ValueOutOfBounds(repr(arg))
        return zpad(encode_int(i % 2**sub), 32)
    # Unsigned reals: ureal<high>x<low>
    elif base == 'ureal':
        high, low = [int(x) for x in sub.split('x')]
        if not 0 <= arg < 2**high:
            raise ValueOutOfBounds(repr(arg))
        return zpad(encode_int(int(arg * 2**low)), 32)
    # Signed reals: real<high>x<low>
    elif base == 'real':
        high, low = [int(x) for x in sub.split('x')]
        if not -2**(high - 1) <= arg < 2**(high - 1):
            raise ValueOutOfBounds(repr(arg))
        i = int(arg * 2**low)
        return zpad(encode_int(i % 2**(high + low)), 32)
    # Strings
    elif base == 'string' or base == 'bytes':
        if not is_string(arg):
            raise EncodingError("Expecting string: %r" % arg)
        # Fixed length: string<sz>
        if len(sub):
            assert int(sub) <= 32
            assert len(arg) <= int(sub)
            return arg + b'\x00' * (32 - len(arg))
        # Variable length: string
        else:
            return zpad(encode_int(len(arg)), 32) + \
                arg + \
                b'\x00' * (utils.ceil32(len(arg)) - len(arg))
    # Hashes: hash<sz>
    elif base == 'hash':
        if not (int(sub) and int(sub) <= 32):
            raise EncodingError("too long: %r" % arg)
        if isnumeric(arg):
            return zpad(encode_int(arg), 32)
        elif len(arg) == int(sub):
            return zpad(arg, 32)
        elif len(arg) == int(sub) * 2:
            return zpad(decode_hex(arg), 32)
        else:
            raise EncodingError("Could not parse hash: %r" % arg)
    # Addresses: address (== hash160)
    elif base == 'address':
        assert sub == ''
        if isnumeric(arg):
            return zpad(encode_int(arg), 32)
        elif len(arg) == 20:
            return zpad(arg, 32)
        elif len(arg) == 40:
            return zpad(decode_hex(arg), 32)
        elif len(arg) == 42 and arg[:2] == '0x':
            return zpad(decode_hex(arg[2:]), 32)
        else:
            raise EncodingError("Could not parse address: %r" % arg)
    raise EncodingError("Unhandled type: %r %r" % (base, sub))