Example #1
0
def main(m_type, m_name, logger, video_path=None, write_output=True):
    with tf.Session() as sess:

        # load best model
        model = load_model(sess, m_type, m_name, logger)

        # check input source is a file or camera
        if video_path == None:
            video_path = 0

        # load the video or camera
        cap = cv2.VideoCapture(video_path)
        ret = True
        counter = 0
        tic = time.time()
        frames = []
        preds = []

        while ret:
            ret, frame = cap.read()

            if ret:
                # Our operations on the frame come here
                frames.append(frame)
                frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                f_shape = frame.shape
                if frame.shape[0] != 192:
                    frame = rescale(frame)

                image = gray_normalizer(frame)
                image = change_channel(image, config["input_channel"])
                [p] = model.predict(sess, [image])
                x, y, w = upscale_preds(p, f_shape)

                preds.append([x, y, w])
                # frames.append(gray)
                counter += 1

        toc = time.time()
        print("{0:0.2f} FPS".format(counter / (toc - tic)))

    # get the video size
    video_size = frames[0].shape[0:2]
    if write_output:
        # prepare a video write to show the result
        video = cv2.VideoWriter("predicted_video.avi",
                                cv2.VideoWriter_fourcc(*"XVID"), 15,
                                (video_size[1], video_size[0]))

        for i, img in enumerate(frames):
            labeled_img = annotator((0, 250, 0), img, *preds[i])
            video.write(labeled_img)

        # close the video
        cv2.destroyAllWindows()
        video.release()
    print("Done...")
Example #2
0
def swirski_reader(batch_size=64, normalize_image=True):
    # get trials
    trials = sorted(glob.glob("data/swirski/*"))

    # loop over the trials and read the pupil-ellipses.txt files
    for path in trials:
        print("reading and predicting {}".format(path))
        txt_path = path + "/pupil-ellipses.txt"
        dataset_name = path.split("/")[2]

        # loop over lines and read the labels and yield with corresponding images
        imgs_batch = []
        lbls_batch = []
        shapes = []
        with open(txt_path, mode='r') as f:
            for line in f:
                line = line.strip()
                (img_id, vals) = line.split(" | ")
                vals = vals.split(" ")
                x = float(vals[0])
                y = float(vals[1])

                # create image path
                img_path = "{0}/frames/{1}-eye.png".format(path, img_id)
                img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)

                shapes.append(img.shape)

                # resize the input to model input size
                if img.shape != (config["input_height"],
                                 config["input_width"]):
                    img = rescale(img)

                if normalize_image:
                    img = gray_normalizer(img)

                # expand dimension
                img = change_channel(img)

                imgs_batch.append(img)
                lbls_batch.append([x, y])

                if len(imgs_batch) == batch_size:
                    yield imgs_batch, np.asarray(lbls_batch, dtype=np.float32),\
                          dataset_name, np.asarray(shapes, dtype=np.float32)
                    imgs_batch = []
                    lbls_batch = []
                    shapes = []

            # yield the rest
            if len(imgs_batch) > 0:
                yield imgs_batch, np.asarray(lbls_batch, dtype=np.float32),\
                      dataset_name, np.asarray(shapes, dtype=np.float32)
Example #3
0
def check_trials():
    logger = Logger("INC", "Inc_Purifier3", "", config, dir="models/")
    with tf.Session() as sess:
        # load best model
        model = load_model(sess, "INC", "Inc_Purifier3", logger)

        # print the result for different pixel error
        pixel_errors = [1, 2, 3, 4, 5, 7, 10, 15, 20]

        trials_path = sorted(glob.glob("data/Original-data/*/*"))

        results = []

        for i, path in enumerate(trials_path):
            print("{0:3} reading {1}".format(i, path))

            images_path = glob.glob(path + "/*.jpg")
            images = []
            truths = []
            img_paths = []

            for ii, img_path in enumerate(images_path):

                _xml_path = img_path.split(".")[0] + ".xml"
                _xml_path = _xml_path.replace("in.", "gt.")
                truth = read_xml(_xml_path)

                img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
                img = change_channel(img)
                img = gray_normalizer(img)

                images.append(img)
                truths.append(truth)
                img_paths.append(img_path)
                if len(images) == 64 or ii == (len(images_path) - 1):
                    pred = model.predict(sess, images)

                    for iii, p in enumerate(pred):
                        img_id = img_paths[iii]
                        img_id = img_id.split("/")[4]
                        img_id = img_id.split(".")[0]
                        # trial_path, img_id, xt, yt, wt, ht, at, xp, yp, wp, hp, ap
                        result = "{0};{1};{2};{3};{4};{5};{6};{7};{8};{9};{10};{11}\n".format(
                            path, img_id, *truths[iii], *pred[iii])
                        results.append(result)

                    images = []
                    truths = []
                    img_paths = []

        open(RESULTS_PATH, mode="w").writelines(results)
Example #4
0
    def batches(self, ag, lbl_len=4, num_c=1, zero_mean=False):

        # infinitely do ....
        while True:
            # before each epoch, shuffle data
            shuffle(self.data_list)

            images = []
            labels = []
            img_names = []

            # for all records in data list
            for row in self.data_list:
                # read the image and ground truth
                image = cv2.imread(row[0], cv2.IMREAD_GRAYSCALE)
                label = np.asarray(row[1:], dtype=np.float32)

                # add noise to images and corresponding label
                if ag is not None:
                    image, label = ag.addNoise(image, label)

                # discard unused labels
                label = label[0:lbl_len]

                labels.append(label)

                # zero mean the image
                if zero_mean:
                    image = gray_normalizer(image)

                # change to desired num_channel
                image = change_channel(image, num_c)

                images.append(image)

                img_names.append(row[0])
                if len(images) == self.batch_size:
                    yield images, labels, img_names

                    # empty the list for next yield
                    images = []
                    labels = []
                    img_names = []

            # just yield reminded data
            if len(images) > 0:
                yield images, labels, img_names
Example #5
0
def run(model, sess, file_in, information, name_exam):
    # load the video or camera
    cap = cv2.VideoCapture(file_in)
    fps = cap.get(cv2.CAP_PROP_FPS)

    path_exams = '/media/marcos/Dados/Projects/Results/Qualificacao/DeepRN/'
    # path_frames = '/media/marcos/Dados/Projects/Results/Qualificacao/DeepRN/Frames/{}'.format(name_exam)

    # try:
    #     os.mkdir(path_frames)
    # except FileExistsError:
    #     pass

    title_label = 'patient,param,frame,center_x,center_y,radius,flash_algorithm,flash_information,color_flash,eye_size,img_mean,img_std,img_median'
    file_label = '/media/marcos/Dados/Projects/Results/Qualificacao/DeepRN/{}_label.csv'.format(name_exam)
    add_label(file_label, title_label)

    file_information = '/media/marcos/Dados/Projects/Datasets/Exams/Information_Exams/{}.log'.format(name_exam)
    if os.path.exists(file_information):
        patient_exam, param_exam = information.get_information_exam(file_information, fps)
    else:
        patient_exam, param_exam = '', ''

    counter, frames, preds = 0, [], []

    counter = 0
    ret, frame = cap.read()
    while ret:
        frames.append(frame)

        yuv = cv2.cvtColor(frame, cv2.COLOR_BGR2YUV)
        yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0])
        bgr = cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR)
        frame = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
        # cv2.imwrite('{}/gray_{}.png'.format(path_frames, counter), frame)

        f_shape = frame.shape
        if frame.shape[0] != 192:
            frame = rescale(frame)

        image = gray_normalizer(frame)
        # cv2.imwrite('{}/gray_normalizer_{}.png'.format(path_frames, counter), image)

        image = change_channel(image, config["input_channel"])
        # cv2.imwrite('{}/change_channel_{}.png'.format(path_frames, counter), image)

        [p] = model.predict(sess, [image])
        x, y, w = upscale_preds(p, f_shape)

        preds.append([x, y, w])

        if os.path.exists(file_information):
            flash_information, color_information = information.get_information_params(counter)
        else:
            flash_information, color_information = '', ''

        inf = '{},{},{},{},{},{},{},{},{},{},{},{},{}'.format(patient_exam, param_exam, counter, x, y, w, 0,
                                                              flash_information, color_information, 0,
                                                              image.mean(), image.std(), np.median(image))

        add_label(file_label, inf)

        ret, frame = cap.read()
        counter += 1

    if len(frames) > 0:
        video_size = frames[0].shape[0:2]
        fps = cap.get(cv2.CAP_PROP_FPS)
        video = cv2.VideoWriter('{}/{}.avi'.format(path_exams, name_exam), cv2.VideoWriter_fourcc(*"XVID"), fps, (video_size[1], video_size[0]))

        for i, img in enumerate(frames):
            # labeled_img = annotator((0, 250, 0), img, *preds[i])
            x, y, w = preds[i]
            color = (0, 250, 0)
            labeled_img = cv2.circle(img, (int(x), int(y)), int(w/2), color, 2)
            video.write(labeled_img)

        video.release()

    print("Done {}...".format(name_exam))
Example #6
0
def test(args):
    # Setup Model
    model_name = args.arch_RGB
    model = get_model(model_name, True)  # vgg_16
    testset_out_default_path = "./result/"
    testset_out_path = args.result_path
    if args.imgset:
        test_info = args.test_dataset + '_' + args.test_split
    else:
        if args.img_datalist == '':
            # Single image
            test_info = 'single'
        else:
            # Image list
            test_info = 'batch'

    if args.model_full_name != '':
        # Use the full name of model to load
        print("Load training model: " + args.model_full_name)
        checkpoint = torch.load(
            pjoin(args.model_savepath, args.model_full_name))
        if testset_out_path == '':
            testset_out_path = "{}{}_{}".format(testset_out_default_path,
                                                args.model_full_name,
                                                test_info)
        model = torch.nn.DataParallel(model,
                                      device_ids=range(
                                          torch.cuda.device_count()))
        model.load_state_dict(checkpoint['model_RGB_state'])
    else:
        # Pretrain model
        print("Load pretrained model: {}".format(args.state_name))
        state = get_premodel(model, args.state_name)
        model = torch.nn.DataParallel(model,
                                      device_ids=range(
                                          torch.cuda.device_count()))
        model.load_state_dict(state)
        if testset_out_path == '':
            testset_out_path = "{}pretrain_{}".format(testset_out_default_path,
                                                      test_info)

    # Setup image
    # Create output folder if needed
    # if os.path.isdir(testset_out_path) == False:
    #     os.mkdir(testset_out_path)
    if args.imgset:
        print("Test on dataset: {}".format(args.test_dataset))

        # Set up dataloader
        data_loader = get_loader(args.test_dataset)
        data_path = get_data_path(args.test_dataset)
        v_loader = data_loader(data_path,
                               split=args.test_split,
                               img_size=(args.img_rows, args.img_cols),
                               img_norm=args.img_norm)
        evalloader = data.DataLoader(v_loader, batch_size=1)
        print("Finish Loader Setup")

        model.cuda()
        model.eval()
        sum_mean, sum_median, sum_small, sum_mid, sum_large = 0, 0, 0, 0, 0
        evalcount = 0
        if args.numerical_result_path != '':
            f = open(args.numerical_result_path, 'w')

        with torch.no_grad():
            # for i_val, (images_val, labels_val, masks_val, valids_val) in tqdm(enumerate(evalloader)):
            for i_val, (images_val, labels_val, masks_val, valids_val,
                        depthes_val,
                        meshdepthes_val) in tqdm(enumerate(evalloader)):
                images_val = Variable(images_val.contiguous().cuda())
                labels_val = Variable(labels_val.contiguous().cuda())
                masks_val = Variable(masks_val.contiguous().cuda())
                if args.arch_RGB == 'ms':
                    outputs, outputs2, outputs3, outputs4, outputs5 = model(
                        images_val)
                else:
                    outputs = model(images_val)  # 1*ch*h*w

                outputs_n, mean_i, median_i, small_i, mid_i, large_i = eval_normal(
                    outputs, labels_val, masks_val)
                outputs_norm = np.squeeze(outputs_n.data.cpu().numpy(), axis=0)
                labels_val_norm = np.squeeze(labels_val.data.cpu().numpy(),
                                             axis=0)
                images_val = np.squeeze(images_val.data.cpu().numpy(), axis=0)
                images_val = images_val + 0.5
                images_val = images_val.transpose(1, 2, 0)

                outputs_norm = change_channel(outputs_norm)
                # outputs_norm= temp_change_mlt_chanel(outputs_norm)

                labels_val_norm = (labels_val_norm + 1) / 2  # scale to 0 1
                # Change channel to have a better appearance for paper.
                labels_val_norm = change_channel(labels_val_norm)
                misc.imsave(
                    pjoin(testset_out_path, "{}_out.png".format(i_val + 1)),
                    outputs_norm)
                misc.imsave(
                    pjoin(testset_out_path, "{}_gt.png".format(i_val + 1)),
                    labels_val_norm)
                misc.imsave(
                    pjoin(testset_out_path, "{}_in.jpg".format(i_val + 1)),
                    images_val)

                if ((np.isnan(mean_i)) | (np.isinf(mean_i))):
                    print('Error!')
                    sum_mean += 0
                else:
                    sum_mean += mean_i
                    sum_median += median_i
                    sum_small += small_i
                    sum_mid += mid_i
                    sum_large += large_i
                    evalcount += 1
                    if (i_val + 1) % 1 == 0:
                        print(
                            "Iteration %d Evaluation Loss: mean %.4f, median %.4f, 11.25 %.4f, 22.5 %.4f, 30 %.4f"
                            % (i_val + 1, mean_i, median_i, small_i, mid_i,
                               large_i))
                    if (args.numerical_result_path != ''):
                        f.write(
                            "Iteration %d Evaluation Loss: mean %.4f, median %.4f, 11.25 %.4f, 22.5 %.4f, 30 %.4f\n"
                            % (i_val + 1, mean_i, median_i, small_i, mid_i,
                               large_i))
            sum_mean = sum_mean / evalcount
            sum_median = sum_median / evalcount
            sum_small = sum_small / evalcount
            sum_mid = sum_mid / evalcount
            sum_large = sum_large / evalcount
            if args.numerical_result_path != '':
                f.write(
                    "evalnum is %d, Evaluation Mean Loss: mean %.4f, median %.4f, 11.25 %.4f, 22.5 %.4f, 30 %.4f"
                    % (evalcount, sum_mean, sum_median, sum_small, sum_mid,
                       sum_large))
                f.close()
            print(
                "evalnum is %d, Evaluation Mean Loss: mean %.4f, median %.4f, 11.25 %.4f, 22.5 %.4f, 30 %.4f"
                % (evalcount, sum_mean, sum_median, sum_small, sum_mid,
                   sum_large))
            # end of dataset test
    else:
        if args.img_datalist == "":
            # For single image, without GT
            print("Read Input Image from : {}".format(args.img_path))
            img = misc.imread(args.img_path)
            if args.img_rot:
                img = np.transpose(img, (1, 0, 2))
                img = np.flipud(img)
            orig_size = img.shape[:-1]
            img = misc.imresize(
                img,
                (args.img_rows,
                 args.img_cols))  # Need resize the image to model inputsize

            img = img.astype(np.float)
            if args.img_norm:
                img = (img - 128) / 255
            # NHWC -> NCHW
            img = img.transpose(2, 0, 1)
            img = np.expand_dims(img, 0)
            img = torch.from_numpy(img).float()

            if torch.cuda.is_available():
                model.cuda(0)
                images = Variable(img.contiguous().cuda(0))
            else:
                images = Variable(img)

            with torch.no_grad():
                outputs = model(images)

            outputs_norm = norm_imsave(outputs)
            outputs_norm = np.squeeze(outputs_norm.data.cpu().numpy(), axis=0)

            # Change channels
            outputs_norm = change_channel(outputs_norm)

            misc.imsave(args.out_path, outputs_norm)
            print("Complete")
            # end of test on single image
        else:
            # For image list without GT
            data_list = get_dataList(args.img_datalist)
            for img_path in data_list:
                print("Read Input Image from : {}".format(img_path))
                img = misc.imread(pjoin(args.img_dataroot, img_path))
                height, width, channels = img.shape
                output_filename = img_path.split('/')[-1]
                if args.img_rot:
                    img = np.transpose(img, (1, 0, 2))
                    img = np.flipud(img)
                orig_size = img.shape[:-1]
                img = misc.imresize(img, (
                    args.img_rows,
                    args.img_cols))  # Need resize the image to model inputsize

                img = img.astype(np.float)
                if args.img_norm:
                    img = (img - 128) / 255
                # NHWC -> NCHW
                img = img.transpose(2, 0, 1)
                img = np.expand_dims(img, 0)
                img = torch.from_numpy(img).float()

                if torch.cuda.is_available():
                    model.cuda(0)
                    images = Variable(img.contiguous().cuda(0))
                else:
                    images = Variable(img)

                with torch.no_grad():
                    outputs = model(images)

                outputs_norm = norm_imsave(outputs)
                outputs_norm = np.squeeze(outputs_norm.data.cpu().numpy(),
                                          axis=0)

                # Change channels
                outputs_norm = change_channel(outputs_norm)

                # Resize to the original size, if needed
                # outputs_norm = misc.imresize(outputs_norm, (height, width))

                # Save the result
                misc.imsave(pjoin(args.out_path, output_filename),
                            outputs_norm)

                # Save to mat file, if needed
                # outputs_mat = outputs.tolist()
                # mat_filename = output_filename.replace(output_filename.split('.')[-1], 'mat')
                # sio.savemat(pjoin(testset_out_path, mat_filename), {'normal': outputs_mat});
            print("Complete")
            pass
Example #7
0
def main_images(m_type, m_name, logger, data_path=None, actors=[], write_output=True):
    from tensorflow.compat.v1 import ConfigProto
    from tensorflow.compat.v1 import InteractiveSession
    
    # this thing fixes something
    _config = ConfigProto()
    _config.gpu_options.allow_growth = True
    session = InteractiveSession(config=_config)
    # ---

    with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
        
        # load best model
        model = load_model(sess, m_type, m_name, logger)
        
        eye_info = HierarchicalDict(path=data_path + '/eye_data.json')

        previos_segment = ''
        current_segment = ''
        

        for data_element in tqdm(data_generator(data_path=data_path, actors=actors), ascii=True):
        # for data_element in data_generator(data_path=data_path, actors=actors):
            keys = data_element.keys
            image = data_element.item

            current_segment = keys[:-1]
            if current_segment != previos_segment:
                last_ars = [deque(maxlen=25) for _ in range(2)]

            if not eye_info.check_key(keys):
                continue

            rois_coords = eye_info[keys]['roi']
            contours = eye_info[keys]['cnt']
            aspect_ratios = eye_info[keys]['ars']

            eye1 = np.array(contours[0]).reshape((-1, 1, 2))
            eye2 = np.array(contours[1]).reshape((-1, 1, 2))
            eyes = [eye1, eye2]

            # create empty mask to draw on
            result = np.zeros(image.shape, np.uint8)
            for i, (x1, x2, y1, y2) in enumerate(rois_coords):
                prev_aspect_ratio = sum(last_ars[i]) / len(last_ars[i]) if len(last_ars[i]) else 0.35
                current_aspect_ratio = aspect_ratios[i]
                if current_aspect_ratio < 0.6 * prev_aspect_ratio:
                    continue
                last_ars[i].append(current_aspect_ratio)

                roi = image[y1 : y2, x1 : x2] # get the original eye region
                # preprocessing for the pupil detection model
                roi_gray = cv2.cvtColor(roi, cv2.COLOR_BGR2GRAY)
                shape = roi_gray.shape
                if roi_gray.shape[0] != 192:
                    roi_gray = rescale(roi_gray)

                roi_gray = gray_normalizer(roi_gray)
                roi_gray = change_channel(roi_gray, config["input_channel"])
                # ---
                
                [p] = model.predict(sess, [roi_gray])

                x, y, w = upscale_preds(p, shape)
                x, y, w = [int(item) for item in (x, y, w)]

                # draw the circle indicating a pupil
                if cv2.pointPolygonTest(eyes[i], (x + x1, y + y1), False) != -1:
                    cv2.drawContours(result, [eyes[i]], 0, (255, 255, 255), -1)
                    roi = result[y1 : y2, x1 : x2]
                    cv2.circle(roi, (x, y), 9, (0, 0, 255), -1)
                    result[y1 : y2, x1 : x2] = roi
                # ---

            previos_segment = current_segment

            if write_output:
                actor, domain, segment, idx = keys
                path = os.path.dirname(os.path.abspath(f'{data_path}/{actor}/{domain}/{segment}'))
                path = path + '/' + segment + '/original_renders/eye_regions/'
                if not os.path.exists(path):
                    os.mkdir(path)
                cv2.imwrite(f'{path}{idx}.jpg', cv2.cvtColor(result, cv2.COLOR_BGR2RGB))

    print("Done.")
Example #8
0
def test(args):
    # Setup Model
    # Setup the fusion model (RGB+Depth)
    model_name_F = args.arch_F
    model_F = get_model(model_name_F, True)  # concat and output
    model_F = torch.nn.DataParallel(model_F,
                                    device_ids=range(
                                        torch.cuda.device_count()))
    # Setup the map model
    if args.arch_map == 'map_conv':
        model_name_map = args.arch_map
        model_map = get_model(model_name_map, True)  # concat and output
        model_map = torch.nn.DataParallel(model_map,
                                          device_ids=range(
                                              torch.cuda.device_count()))

    if args.model_full_name != '':
        # Use the full name of model to load
        print("Load training model: " + args.model_full_name)
        checkpoint = torch.load(
            pjoin(args.model_savepath, args.model_full_name))
        model_F.load_state_dict(checkpoint['model_F_state'])
        model_map.load_state_dict(checkpoint["model_map_state"])

    # Setup image
    if args.imgset:
        print("Test on dataset: {}".format(args.dataset))
        data_loader = get_loader(args.dataset)
        data_path = get_data_path(args.dataset)
        v_loader = data_loader(data_path,
                               split=args.test_split,
                               img_size=(args.img_rows, args.img_cols),
                               img_norm=args.img_norm)
        evalloader = data.DataLoader(v_loader, batch_size=1)
        print("Finish Loader Setup")

        model_F.cuda()
        model_F.eval()
        if args.arch_map == 'map_conv':
            model_map.cuda()
            model_map.eval()

        sum_mean, sum_median, sum_small, sum_mid, sum_large, sum_num = [], [], [], [], [], []
        evalcount = 0
        with torch.no_grad():
            for i_val, (images_val, labels_val, masks_val, valids_val,
                        depthes_val,
                        meshdepthes_val) in tqdm(enumerate(evalloader)):

                images_val = Variable(images_val.contiguous().cuda())
                labels_val = Variable(labels_val.contiguous().cuda())
                masks_val = Variable(masks_val.contiguous().cuda())
                valids_val = Variable(valids_val.contiguous().cuda())
                depthes_val = Variable(depthes_val.contiguous().cuda())

                if args.arch_map == 'map_conv':
                    outputs_valid = model_map(
                        torch.cat(
                            (depthes_val, valids_val[:, np.newaxis, :, :]),
                            dim=1))
                    outputs, outputs1, outputs2, outputs3, output_d = model_F(
                        images_val, depthes_val, outputs_valid.squeeze(1))
                else:
                    outputs, outputs1, outputs2, outputs3, output_d = model_F(
                        images_val, depthes_val, valids_val)

                outputs_n, pixelnum, mean_i, median_i, small_i, mid_i, large_i = eval_normal_pixel(
                    outputs, labels_val, masks_val)
                outputs_norm = np.squeeze(outputs_n.data.cpu().numpy(), axis=0)
                labels_val_norm = np.squeeze(labels_val.data.cpu().numpy(),
                                             axis=0)
                images_val = np.squeeze(images_val.data.cpu().numpy(), axis=0)
                images_val = images_val + 0.5
                images_val = images_val.transpose(1, 2, 0)
                depthes_val = np.squeeze(depthes_val.data.cpu().numpy(),
                                         axis=0)
                depthes_val = np.transpose(depthes_val, [1, 2, 0])
                depthes_val = np.repeat(depthes_val, 3, axis=2)

                outputs_norm = change_channel(outputs_norm)
                labels_val_norm = (labels_val_norm + 1) / 2
                labels_val_norm = change_channel(labels_val_norm)

                # if (i_val+1)%10 == 0:
                misc.imsave(
                    pjoin(args.testset_out_path,
                          "{}_MS_hyb.png".format(i_val + 1)), outputs_norm)
                misc.imsave(
                    pjoin(args.testset_out_path,
                          "{}_gt.png".format(i_val + 1)), labels_val_norm)
                misc.imsave(
                    pjoin(args.testset_out_path,
                          "{}_in.jpg".format(i_val + 1)), images_val)
                misc.imsave(
                    pjoin(args.testset_out_path,
                          "{}_depth.png".format(i_val + 1)), depthes_val)

                # accumulate the metrics in matrix
                if ((np.isnan(mean_i)) | (np.isinf(mean_i)) == False):
                    sum_mean.append(mean_i)
                    sum_median.append(median_i)
                    sum_small.append(small_i)
                    sum_mid.append(mid_i)
                    sum_large.append(large_i)
                    sum_num.append(pixelnum)
                    evalcount += 1
                    if (i_val + 1) % 10 == 0:
                        print(
                            "Iteration %d Evaluation Loss: mean %.4f, median %.4f, 11.25 %.4f, 22.5 %.4f, 30 %.4f"
                            % (i_val + 1, mean_i, median_i, small_i, mid_i,
                               large_i))

                        # Summarize the result
            eval_print(sum_mean,
                       sum_median,
                       sum_small,
                       sum_mid,
                       sum_large,
                       sum_num,
                       item='Pixel-Level')

            avg_mean = sum(sum_mean) / evalcount
            sum_mean.append(avg_mean)
            avg_median = sum(sum_median) / evalcount
            sum_median.append(avg_median)
            avg_small = sum(sum_small) / evalcount
            sum_small.append(avg_small)
            avg_mid = sum(sum_mid) / evalcount
            sum_mid.append(avg_mid)
            avg_large = sum(sum_large) / evalcount
            sum_large.append(avg_large)
            print(
                "evalnum is %d, Evaluation Image-Level Mean Loss: mean %.4f, median %.4f, 11.25 %.4f, 22.5 %.4f, 30 %.4f"
                % (evalcount, avg_mean, avg_median, avg_small, avg_mid,
                   avg_large))

            sum_matrix = np.transpose(
                [sum_mean, sum_median, sum_small, sum_mid, sum_large])
            if args.model_full_name != '':
                sum_file = args.model_full_name[:-4] + '.csv'

            np.savetxt(pjoin(args.model_savepath, sum_file),
                       sum_matrix,
                       fmt='%.6f',
                       delimiter=',')
            print("Saving to %s" % (sum_file))
            # end of dataset test
    else:
        if os.path.isdir(args.out_path) == False:
            os.mkdir(args.out_path)
        print("Read Input Image from : {}".format(args.img_path))
        for i in os.listdir(args.img_path):
            if not i.endswith('.jpg'):
                continue

            print i
            input_f = args.img_path + i
            depth_f = args.depth_path + i[:-4] + '.png'
            output_f = args.out_path + i[:-4] + '_rgbd.png'
            img = misc.imread(input_f)

            orig_size = img.shape[:-1]
            if args.img_rot:
                img = np.transpose(img, (1, 0, 2))
                img = np.flipud(img)
                img = misc.imresize(img, (
                    args.img_cols,
                    args.img_rows))  # Need resize the image to model inputsize
            else:
                img = misc.imresize(img, (
                    args.img_rows,
                    args.img_cols))  # Need resize the image to model inputsize

            img = img.astype(np.float)
            if args.img_norm:
                img = (img - 128) / 255
            # NHWC -> NCHW
            img = img.transpose(2, 0, 1)
            img = np.expand_dims(img, 0)
            img = torch.from_numpy(img).float()

            if args.img_rot:
                depth = png_reader_32bit(depth_f,
                                         (args.img_rows, args.img_cols))
                depth = np.transpose(depth, (1, 0))
                depth = np.flipud(depth)
                # valid = png_reader_uint8(mask_f, (args.img_rows,args.img_cols))
                # valid = np.transpose(valid, (1,0))
                # valid = np.flipud(valid)
            else:
                depth = png_reader_32bit(depth_f,
                                         (args.img_rows, args.img_cols))
                # valid = png_reader_uint8(mask_f, (args.img_rows,args.img_cols))

            depth = depth.astype(float)
            # Please change to the scale so that scaled_depth=1 corresponding to real 10m depth
            # matterpot depth=depth/40000  scannet depth=depth/10000
            depth = depth / (args.d_scale)
            if depth.ndim == 3:  # to dim 2
                depth = depth[:, :, 0]
                # if valid.ndim == 3: #to dim 2
            #     valid = valid[:,:,0]

            # valid = 1-depth
            # valid[valid>1] = 1
            valid = (depth > 0.0001).astype(float)
            # valid = depth.astype(float)
            depth = depth[np.newaxis, :, :]
            depth = np.expand_dims(depth, 0)
            valid = np.expand_dims(valid, 0)
            depth = torch.from_numpy(depth).float()
            valid = torch.from_numpy(valid).float()

            if torch.cuda.is_available():
                model_F.cuda()
                model_F.eval()
                if args.arch_map == 'map_conv':
                    model_map.cuda()
                    model_map.eval()
                images = Variable(img.contiguous().cuda())
                depth = Variable(depth.contiguous().cuda())
                valid = Variable(valid.contiguous().cuda())
            else:
                images = Variable(img)
                depth = Variable(depth)
                valid = Variable(valid)

            with torch.no_grad():
                if args.arch_map == 'map_conv':
                    outputs_valid = model_map(
                        torch.cat((depth, valid[:, np.newaxis, :, :]), dim=1))
                    outputs, outputs1, outputs2, outputs3, output_d = model_F(
                        images, depth, outputs_valid.squeeze(1))
                else:
                    outputs, outputs1, outputs2, outputs3, output_d = model_F(
                        images, depth, outputs_valid)

            outputs_norm = norm_imsave(outputs)
            outputs_norm = np.squeeze(outputs_norm.data.cpu().numpy(), axis=0)
            # outputs_norm = misc.imresize(outputs_norm, orig_size)
            outputs_norm = change_channel(outputs_norm)
            misc.imsave(output_f, outputs_norm)
        print("Complete")
Example #9
0
def lpw_reader(batch_size=64, normalize_image=True):
    """
    read LPW dataset.
    Yield: images, labels pairs + trial name (for naming porpuse)
    :return:
    """
    LPW_subject = glob.glob('data/LPW/*')
    LPW_subject = sorted(LPW_subject)

    # get all trial path
    trials_path = []
    for subj in LPW_subject:
        # get the video files
        avi_paths = glob.glob(subj + "/*.avi")
        trials = [p.split(".")[0] for p in avi_paths]
        trials_path.extend(sorted(trials))

    # loop over all trials and yield img + lbls
    for trial in trials_path:
        print("reading and predicting {}...".format(trial))
        avi_path = trial + ".avi"
        txt_path = trial + ".txt"
        f = open(txt_path, mode="r")
        cap = cv2.VideoCapture(avi_path)
        ret = True
        img_batch = []
        lbl_batch = []
        shapes = []
        while ret:
            ret, frame = cap.read()
            if ret:
                frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                line = f.readline().strip()
                vals = line.split(" ")

                shapes.append(frame.shape)

                x = float(vals[0])
                y = float(vals[1])
                if frame.shape != (config["input_height"],
                                   config["input_width"]):
                    img = rescale(frame)

                if normalize_image:
                    img = gray_normalizer(img)

                img = change_channel(img)
                img_batch.append(img)
                lbl_batch.append([x, y])
                if len(img_batch) == batch_size:
                    yield img_batch,\
                          np.asarray(lbl_batch, dtype=np.float32),\
                          trial,\
                          np.asarray(shapes, dtype=np.float32)
                    img_batch = []
                    lbl_batch = []
                    shapes = []

        # yield the rest
        if len(img_batch) > 0:
            yield img_batch, np.asarray(lbl_batch,
                                        dtype=np.float32), trial, np.asarray(
                                            shapes, dtype=np.float32)

        # close file
        f.close()

        # close cv2.cap
        cap.release()
        cv2.destroyAllWindows()