Example #1
0
    def train_word2vec(self, input_file=None, size=128, augmentation=True):
        self.size = size
        save_emb_dir = os.path.join(self.save_dir, 'embedding')
        if not check_path(save_emb_dir):
            os.makedirs(save_emb_dir)
        save_emb_file = os.path.join(save_emb_dir, 'node_w2v_%d' % size)
        if check_path(save_emb_file):
            print("pretrained embedding already exisits")
            return

        if input_file is None or not check_path(input_file):
            input_file = os.path.join(self.save_dir, 'train_ast.pkl')
        trees = pd.read_pickle(input_file)

        print("Original sample number:", len(trees))
        if augmentation:
            cols = ['pre', 'post', 'level']
        else:
            cols = ['pre']
        corpus = []
        for c in cols:
            corpus += trees[c].tolist()
        print("Sample number to train Word2Vec model:", len(corpus))

        from gensim.models.word2vec import Word2Vec
        w2v = Word2Vec(corpus, size=size, workers=16, sg=1, min_count=3)
        w2v.save(save_emb_file)
Example #2
0
def run(experiment):
    #  Check whether all required paths exist
    for key in experiment.config.keys():
        if key.endswith("_dir"):
            utils.check_path(experiment.config[key])

    preprocess.preprocess(experiment)

    results = process.train_and_evaluate(experiment)
Example #3
0
File: master.py Project: Kavka1/RL
 def save_filter(self, remark: str) -> None:
     filter_path = self.exp_path + 'filters/'
     check_path(filter_path)
     filter_params = np.array([
         self.obs_filter.mean, self.obs_filter.square_sum,
         self.obs_filter.count
     ])
     np.save(filter_path + remark, filter_params)
     print(f"-------Filter params saved to {filter_path}-------")
Example #4
0
    def check_squid_files(self):
        """Validates squid config, cache directory and ownership"""

        print "Checking Squid Files......",
        VAR_MAP = {'match_squid_conf':      False,
                   'match_squid_cache':     False,
                   'match_squid_ownership': False,
                   }

        conf_err_msg = health_check_utils.check_path(
            self.NAME,
            "/etc/squid/squid.conf")
        if not conf_err_msg == "":
            self._set_status(0, conf_err_msg)
        elif int(oct(os.stat('/etc/squid/squid.conf').st_mode)) < 644:
            self._set_status(
                0,
                "[%s]Error: squid.conf has incorrect "
                "file permissions" % self.NAME)
        else:
            VAR_MAP['match_squid_conf'] = True

        squid_path_err_msg = health_check_utils.check_path(
            self.NAME,
            '/var/squid/')
        if not squid_path_err_msg == "":
            self.set_stauts(0, squid_path_err_msg)
        elif health_check_utils.check_path(self.NAME,
                                           '/var/squid/cache') != "":
            self._set_status(
                0,
                health_check_utils.check_path(
                    self.NAME,
                    '/var/squid/cache'))
        else:
            VAR_MAP['match_squid_cache'] = True
            uid = os.stat('/var/squid/').st_uid
            gid = os.stat('/var/squid/').st_gid
            if uid != gid or pwd.getpwuid(23).pw_name != 'squid':
                self._set_status(
                    0,
                    "[%s]Error: /var/squid directory ownership "
                    "misconfigured" % self.NAME)
            else:
                VAR_MAP['match_squid_ownership'] = True

        failed = []
        for key in VAR_MAP.keys():
            if VAR_MAP[key] is False:
                failed.append(key)
        if len(failed) != 0:
            self.messages.append(
                "[%s]Info: Failed components for squid config: %s"
                % (self.NAME, ', '.join(item for item in failed)))
        return True
Example #5
0
 def save_to_file(self):
     """Save options to settings file. """
     check_path(self.config_path)
     #print("cfg: %s", self.settings_file)
     with open(self.settings_file, 'w', encoding="utf8") as settings_file:
         options = self._get_options()
         #print("options: %s" % options)
         json.dump(options,
                   settings_file,
                   indent=4,
                   separators=(',', ': '))
Example #6
0
def img_watermark(in_video, out_video):
    check_path(out_video)
    img_path = "./logo.png"
    args = [
        'ffmpeg', '-i', in_video, '-i', img_path, '-filter_complex',
        'overlay=10:main_h-overlay_h-10', out_video
    ]
    p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    out, err = p.communicate()
    if p.returncode != 0:
        raise Exception('ffprobe', out, err)
    return out.decode('utf-8')
Example #7
0
def trans_mapping(uniref90map, p_trans_map):
    say("Loading transitive mapping file:\n ", p_trans_map)
    check_path(p_trans_map)
    overrides = {}
    uniref90map_r = {}
    for header, uniref90 in uniref90map.items():
        uniref90map_r.setdefault(uniref90, set()).add(header)
    with try_open(p_trans_map) as fh:
        for row in csv.reader(fh, csv.excel_tab):
            uniref90, uniref50 = row
            headers = uniref90map_r.get(uniref90, set())
            for h in headers:
                overrides[h] = uniref50
    return overrides
Example #8
0
def parse_results(results):
    say("Parsing results file:\n ", results)
    check_path(results)
    mapping = {}
    mode = get_mode(results)
    min_pident = float(mode.replace("uniref", ""))
    with try_open(results) as fh:
        for row in csv.reader(fh, csv.excel_tab):
            h = Hit(row, config=c_output_format)
            if h.qseqid not in mapping:
                if h.pident >= min_pident and h.mcov >= c_min_coverage:
                    uniref = h.sseqid.split("|")[0]
                    mapping[h.qseqid] = uniref
    return mapping
Example #9
0
def split_by_time(in_video, out_video):
    check_path(out_video)
    start = '00:00:02'
    l = '3'
    # args = ['ffmpeg', '-i', in_video, '-c', 'copy', '-ss', start,  out_video]
    args = [
        'ffmpeg', '-i', in_video, '-vcodec', 'copy', '-acodec', 'copy', '-ss',
        start, '-t', l, '-sn', out_video
    ]
    p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    out, err = p.communicate()
    if p.returncode != 0:
        raise Exception('ffmpeg', out, err)
    print(out.decode('utf-8'))
Example #10
0
def parse_spm5_preproc(work_dir, step):
    doc = {}
    if hasattr(step, 'spatial') and hasattr(step.spatial, 'realign'):
        realign = step.spatial.realign.estwrite
        motion = []
        if len(realign.data[0].shape) == 0:
            realign = [realign]
        else:
            realign = realign.data
            for session in realign:
                data_dir = find_data_dir(work_dir, check_path(session[0]))
                motion.append(glob.glob(os.path.join(data_dir, 'rp_*.txt'))[0])
            doc['motion'] = motion
    if hasattr(step, 'spatial') and isinstance(step.spatial, np.ndarray):
        doc['anatomy'] = makeup_path(work_dir,
                                     check_path(step.spatial[0].preproc.data))
        doc['wmanatomy'] = prefix_filename(
            makeup_path(
                work_dir,
                check_path(step.spatial[1].normalise.write.subj.resample)),
            'w')
    if hasattr(step, 'temporal'):
        doc['n_slices'] = int(step.temporal.st.nslices)
        doc['ref_slice'] = int(step.temporal.st.refslice)
        doc['slice_order'] = step.temporal.st.so.tolist()
        doc['ta'] = float(step.temporal.st.ta)
        doc['tr'] = float(step.temporal.st.tr)
        doc['bold'] = []
        doc['swabold'] = []
        if len(step.temporal.st.scans[0].shape) == 0:
            bold = [step.temporal.st.scans]
        else:
            bold = step.temporal.st.scans
        for session in bold:
            data_dir = find_data_dir(work_dir, str(session[0]))
            doc['bold'].append(
                check_paths([
                    os.path.join(data_dir,
                                 os.path.split(str(x))[1]) for x in session
                ]))
            doc['swabold'].append(
                check_paths([
                    prefix_filename(
                        os.path.join(data_dir,
                                     os.path.split(str(x))[1]), 'swa')
                    for x in session
                ]))
        doc['n_scans'] = [len(s) for s in doc['bold']]
    return doc
Example #11
0
    def check_snmp_mibs(self):
        """Checks if SNMP MIB files are properly placed"""

        print "Checking SNMP MIBs......",
        conf_err_msg = health_check_utils.check_path(self.NAME,
                                                     '/etc/snmp/snmp.conf')
        if not conf_err_msg == "":
            self._set_status(0, conf_err_msg)

        mibs_err_msg = health_check_utils.check_path(
            self.NAME,
            '/usr/local/share/snmp/mibs')
        if not mibs_err_msg == "":
            self._set_status(0, mibs_err_msg)
        return True
Example #12
0
    def build_seq_index(self, set_type, augmentation=True):
        save_path = os.path.join(self.save_dir, 'embedding',
                                 '%s.pkl' % set_type)
        if check_path(save_path):
            print("id sequence file already exists")
            return

        from gensim.models.word2vec import Word2Vec
        word2vec = Word2Vec.load(
            os.path.join(self.save_dir, 'embedding',
                         'node_w2v_%d' % self.size)).wv
        vocab = word2vec.vocab
        max_token = word2vec.vectors.shape[0]

        def tree_to_index(seq_list):
            result = [
                vocab[w].index if w in vocab else max_token for w in seq_list
            ]
            return result

        if augmentation:
            cols = ['pre', 'post', 'level']
        else:
            cols = ['pre']
        fpath = os.path.join(self.save_dir, '%s_ast.pkl' % set_type)
        trees = pd.read_pickle(fpath)
        for c in cols:
            trees[c] = trees[c].apply(tree_to_index)
        cols = cols + ['label']
        trees[cols].to_pickle(save_path)

        seq_len = trees['pre'].apply(len)
        print("min/max sequence lenght: ", seq_len.min(), seq_len.max())
Example #13
0
 def __init__(self, train_file, valid_file, test_file):
     print("Beinging preprocess data...")
     self.set_types = ['train', 'valid', 'test']
     self.files = [train_file, valid_file, test_file]
     for f in self.files:
         assert check_path(f), "%s not exists" % f
     self.save_dir = os.path.dirname(train_file)
Example #14
0
    def __init__(self, parameters):
        if not isinstance(parameters, dict):
            raise TypeError('"parameters" must be a dict type')
        if 'path_data' not in parameters.keys():
            raise KeyError(
                '"path_data" is not in "parameters", "path_data" is a necessary parameter'
            )
        if not check_path(parameters['path_data']):
            raise ValueError(f"'{parameters['path_data']}' does not exists")
        if not parameters['target']:
            raise KeyError(
                '"target" is not in "parameters", "target" is a necessary parameter'
            )

        self.path = parameters['path_data']
        self.sep = parameters['sep']
        self.target = parameters['target']
        self.id = parameters['id']
        self.type = parameters['type']
        self.num_features = parameters['num_features']
        self.threshold = parameters['threshold']
        self.n_jobs = parameters['n_jobs']
        self.output_file_name = parameters['output_file_name']
        self.df = None

        logging.info(f"Object {self} is created")
Example #15
0
def parse_spm8_preproc(work_dir, step):
    doc = {}

    if hasattr(step, 'spatial') and hasattr(step.spatial, 'preproc'):
        doc['anatomy'] = makeup_path(
            work_dir, check_path(step.spatial.preproc.data))
        doc['wmanatomy'] = prefix_filename(doc['anatomy'], 'wm')

    if hasattr(step, 'temporal'):
        doc['n_slices'] = int(step.temporal.st.nslices)
        doc['ref_slice'] = int(step.temporal.st.refslice)
        doc['slice_order'] = step.temporal.st.so.tolist()
        doc['ta'] = float(step.temporal.st.ta)
        doc['tr'] = float(step.temporal.st.tr)
        doc['bold'] = []
        doc['swabold'] = []
        if len(step.temporal.st.scans[0].shape) == 0:
            bold = [step.temporal.st.scans]
        else:
            bold = step.temporal.st.scans
        for session in bold:
            data_dir = find_data_dir(work_dir, str(session[0]))
            doc['bold'].append(check_paths(
                [os.path.join(data_dir, os.path.split(str(x))[1])
                 for x in session]))
            doc['swabold'].append(check_paths(
                [prefix_filename(os.path.join(
                    data_dir, os.path.split(str(x))[1]), 'swa')
                for x in session]))
        doc['n_scans'] = [len(s) for s in doc['bold']]
    return doc
Example #16
0
 def save_plot(self):
     # add options to change file format, background color/transparency,
     # resolution, padding, etc.
     file_prefix = os.path.join('Plots', time.strftime('%Y-%m-%d'), 
                                time.strftime('%Z.%H.%M.%S'))
     plot_file = file_prefix + '.eps'
     utils.check_path(plot_file)
     try:
         # bug in matplotlib 1.4.0 prevents this from working
         # (https://github.com/matplotlib/matplotlib/pull/3434)
         plt.savefig(plot_file, format='eps', bbox_inches='tight')
     except:
         plt.savefig(plot_file, format='eps')
     print '\nPlot saved as ' + plot_file
     plot_log_file = file_prefix + '.log'
     self.save_log(filename=plot_log_file)
    def __init__(self,
                 facenet_model_dir,
                 mtcnn_model_dir,
                 resize_factor=0.7,
                 match_thresh=0.7,
                 mtcnn_params=MTCNN_PARAMS_DEFAULT,
                 db_load_path=None,
                 database_verbose=False,
                 gpu_memory_fraction=0.4):
        '''
		Arguments:
			facenet_model_dir: Directory containing the FaceNet model, with meta-file and ckpt-file
			mtcnn_model_dir: Directory containing MTCNN model, det1.npy, det2.npy, det3.npy
			resize_factor: input image will be resize to a smaller size before sent into MTCNN and FaceNet
			match_thresh: the lower bound of a valid match (if distance between 2 embeddings is higher 
						  than this threshold, then the corresponding 2 faces will be viewed as different)
			mtcnn_params: Parameters of MTCNN, a dictionary with 3 keys, 'minsize', 'threshold', 'factor'
			db_load_path: if set, load existed Face database
			database_verbose: if True, print extra messages as database updates, and vice versa
			gpu_memory_fraction: Fraction of GPU memory to be queried, in range [0,1]
		Return:
			an instance of FaceRecognizer object
		'''
        self._facenet_model_dir = os.path.abspath(
            os.path.expanduser(facenet_model_dir))
        self._mtcnn_model_dir = os.path.abspath(
            os.path.expanduser(mtcnn_model_dir))
        self._minsize = mtcnn_params['minsize']
        self._threshold = mtcnn_params['threshold']
        self._factor = mtcnn_params['factor']
        self._match_thresh = match_thresh
        self._resize_factor = resize_factor

        # define graph to be built on
        self._graph = tf.Graph()
        # self._graph = tf.Graph()
        # define session
        sess_conf = tf.ConfigProto()
        sess_conf.gpu_options.allow_growth = True
        sess_conf.gpu_options.per_process_gpu_memory_fraction = gpu_memory_fraction
        self._sess = tf.Session(graph=self._graph, config=sess_conf)
        # I/O of Facenet
        self._images_placeholder = []
        self._embeddings = []
        # database
        if db_load_path is not None:  # load existing Face database
            db_load_path = utils.check_path(db_load_path)
            with open(db_load_path, 'rb') as handle:
                self._database = pickle.load(handle)
            print('Load FaceDatabase from {}'.format(db_load_path))
            self._database._verbose = database_verbose
        else:  # create new Face database
            self._database = FaceDatabase(database_verbose)
        # MTCNN
        self._pnet = []
        self._rnet = []
        self._onet = []
        # embeddings and corresponding names obtained from current inference
        self._cur_embs = []
        self._cur_embs_name = []
Example #18
0
def getEdgeFeatureCSV(years,resource):
  gs={}
  global countries
  cList =[]
  As=[]
  
  for y in years:
    gs[y]=get_graph(y, resource)
    e = get_graph(y,'essex')
    cList.append(set(gs[y].nodes()))
    cList.append(set(e.nodes()))
    #print 'For the year'
    #pprint(gs[y].nodes())
    #pprint(e.nodes())
  #pprint(cList)
  countries = list(set.intersection(*cList))
  print 'Countries included so far:'
  print countries

  edgefeatureYears=years[:-1]
  nodefeatureYear=years[-2]
  nodefeatureYears=[nodefeatureYear]

  nodefeatures=node_feature_extraction(nodefeatureYears,nodefeatureDict,resource)
  edgefeatures=edge_feature_extraction(edgefeatureYears, countries, edgefeatureDict,resource)
  nodeToEdgeFeatures=convertNodalFeaturesToEdgeFeatures(countries, nodefeatureYears, nodefeatures)
  edgefeatures.update(nodeToEdgeFeatures)

  features=edgefeatures.keys()
  check_path('data/raw/features/'+resource[0]+'/edgedata/')
  filename=open('data/raw/features/'+resource[0]+'/edgedata/'+str(years[-1])+'.csv', 'wb')
  writer = csv.writer(filename)
  fnames=copy.deepcopy(features)
  fnames.append("t")
  fnames.insert(0, "edge")
  writer.writerow(fnames)
  for c1 in countries:
    for c2 in countries:
      row=[c1+"_"+c2, ]
      for f in features:
        row.append(edgefeatures[f][(c1, c2)])
      try:
        t=gs[years[-1]][c1][c2]["weight"]
      except:
        t=0
      row.append(t)
      writer.writerow(row)
Example #19
0
    def __init__(self, parameters):
        if not isinstance(parameters, dict):
            raise TypeError('"parameters" must be a dict type')

        if 'path_data' not in parameters.keys():
            raise KeyError(
                '"path_data" is not in "parameters", "path_data" is a necessary parameter'
            )

        if not check_path(parameters['path_data']) or not check_dir(
                parameters['path_data']):
            raise ValueError(
                f"'{parameters['path_data']}' does not exists or is not folder"
            )

        if not check_csv(parameters['path_data']):
            raise ValueError(
                f"'{parameters['path_data']}' must contain only csv files")

        all_file_founded, list_not_founded_files = check_csv_files(
            parameters['path_data'], parameters['tables'])
        if not all_file_founded:
            raise ValueError(
                f"{list_not_founded_files} is not founded in {parameters['path_data']}"
            )

        self.path = parameters['path_data']
        self.tables = parameters['tables']
        self.main_table = parameters['main_table']
        self.depth = parameters['depth']
        self.relations = parameters['relations']
        self.sep = parameters['sep']
        self.n_jobs = min(os.cpu_count(), parameters['n_jobs'])
        self.chunk_size = parameters['chunk_size']
        self.max_features = parameters['max_features']
        self.target = parameters['target']
        self.paths_files = [
            os.path.join(self.path, table) for table, _ in self.tables.items()
        ]
        self.drop_contains = [col for _, col in self.tables.items() if col
                              ] + [self.target + ')']
        self.dict_dataframes = dict()
        self.entities = None
        self.agg_primitives = parameters['agg_primitives']
        self.trans_primitives = parameters['trans_primitives']
        self.feature_matrix = None
        self.feature_names = None
        self.output_file_name = parameters['output_file_name']
        self.time_indecies = parameters['time_indecies']
        self.time_variables = parameters[
            'time_variables']  # TODO заменить на обработку из файла Ани
        self.feature_names_file = parameters['file_name_for_features']
        self.generate_selected_features = parameters[
            'generate_selected_features']
        self.file_name_with_selected_features = parameters[
            'file_with_selected_features']
        self.selected_features = list()

        logging.info(f"Object {self} is created")
Example #20
0
def proc_func(csv_path):
    start_time = time.time()
    print(csv_path + ' has began ...')
    ckpt_path = ckpt_folder + csv_path + '.ckpt'
    check_path(ckpt_path, binary=True)
    ckpt_index = read_ckpt(ckpt_path)

    csv_file = csv.reader(open(csv_folder + csv_path + '.csv'))
    _ = next(csv_file)
    rows = [row for row in csv_file]
    print('start from checkpoint ' + str(ckpt_index + 1) + ' in ' +
          str(csv_path))

    for i in tqdm(range(ckpt_index + 1, len(rows))):
        process(rows[i][0], rows[i][1])
        save_ckpt(i, ckpt_path)
    print(csv_path + ' has been done in ' + str(time.time() - start_time))
Example #21
0
def init_log(args):
    import time
    current_time = time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime())
    # Creating log file
    save_path = './mnist/'
    check_path(save_path)
    file = save_path + 'q_' + args.hiddens + '_n_' + str(args.num_masks) + \
           '_lr_' + str(args.learning_rate) + '_wd_' + str(args.weight_decay) + \
           '_b_' + str(args.batch_size) + '_' + current_time
    logging.basicConfig(
        filename=file + '.log',
        filemode='w',
        level=logging.INFO,
        format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
    logger = logging.getLogger(__name__)

    return logger, file
Example #22
0
def parse_spm5_preproc(work_dir, step):
    doc = {}
    if hasattr(step, 'spatial') and hasattr(step.spatial, 'realign'):
        realign = step.spatial.realign.estwrite
        motion = []
        if len(realign.data[0].shape) == 0:
            realign = [realign]
        else:
            realign = realign.data
            for session in realign:
                data_dir = find_data_dir(work_dir, check_path(session[0]))
                motion.append(glob.glob(os.path.join(data_dir, 'rp_*.txt'))[0])
            doc['motion'] = motion
    if hasattr(step, 'spatial') and isinstance(step.spatial, np.ndarray):
        doc['anatomy'] = makeup_path(
            work_dir, check_path(step.spatial[0].preproc.data))
        doc['wmanatomy'] = prefix_filename(makeup_path(
            work_dir,
            check_path(step.spatial[1].normalise.write.subj.resample)),
            'w')
    if hasattr(step, 'temporal'):
        doc['n_slices'] = int(step.temporal.st.nslices)
        doc['ref_slice'] = int(step.temporal.st.refslice)
        doc['slice_order'] = step.temporal.st.so.tolist()
        doc['ta'] = float(step.temporal.st.ta)
        doc['tr'] = float(step.temporal.st.tr)
        doc['bold'] = []
        doc['swabold'] = []
        if len(step.temporal.st.scans[0].shape) == 0:
            bold = [step.temporal.st.scans]
        else:
            bold = step.temporal.st.scans
        for session in bold:
            data_dir = find_data_dir(work_dir, str(session[0]))
            doc['bold'].append(check_paths(
                [os.path.join(data_dir, os.path.split(str(x))[1])
                 for x in session]))
            doc['swabold'].append(check_paths(
                [prefix_filename(os.path.join(
                    data_dir, os.path.split(str(x))[1]), 'swa')
                for x in session]))
        doc['n_scans'] = [len(s) for s in doc['bold']]
    return doc
Example #23
0
    def run(self):
        source_file = self.LATEST_YOUTUBE_DL + YOUTUBEDL_BIN
        destination_file = os.path.join(self.download_path, YOUTUBEDL_BIN)
        self._talk_to_gui('download', destination_file)
        check_path(self.download_path)

        try:
            stream = request.urlopen(source_file,
                                     timeout=self.DOWNLOAD_TIMEOUT)

            with open(destination_file, 'wb') as dest_file:
                dest_file.write(stream.read())

            self._talk_to_gui('correct')
        except (HTTPError, URLError, IOError) as error:
            self._talk_to_gui('error', error)

        if not self.quiet:
            self._talk_to_gui('finish')
Example #24
0
def text_watermark(in_video, out_video):
    check_path(out_video)
    text = "测试中文水印"
    x = 10
    y = 10
    fontf = "./hysjsJ.ttf"
    fontsize = 12
    fcolor = "white"
    sc = 'black'
    shadow_x = 5
    shadow_y = 5
    custom = "drawtext=text={text}:x=100:y=H-th-100:fontfile={fontf}:fontsize=38:fontcolor=red:shadowcolor=black:shadowx=5:shadowy=5 "
    custom = custom.format(text=text, fontf=fontf)
    args = ['ffmpeg', '-i', in_video, '-vf', custom, out_video]
    p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    out, err = p.communicate()
    if p.returncode != 0:
        raise Exception('ffprobe', out, err)
    return out.decode('utf-8')
Example #25
0
    def _write(self, data, mode):
        """Write data to the log file.

        That's the main method for writing to the log file.

        Args:
            data (string): String to write on the log file.
            mode (string): Can be any IO mode supported by python.

        """
        check_path(self.config_path)

        with open(self.log_file, mode) as log:
            if mode == 'a' and self.add_time:
                msg = self.TIME_TEMPLATE.format(time=strftime('%c'),
                                                error_msg=data)
            else:
                msg = data

            log.write(msg)
Example #26
0
    def check_rsyslogd(self):
        """Validates rsyslogd configuration and service"""

        print "Checking rsyslog......",
        conf_err_msg = health_check_utils.check_path(self.NAME,
                                                     '/etc/rsyslog.conf')
        if not conf_err_msg == "":
            self._set_status(0, conf_err_msg)

        dir_err_msg = health_check_utils.check_path(self.NAME,
                                                    '/etc/rsyslog.d/')
        if not dir_err_msg == "":
            self._set_status(0, dir_err_msg)

        serv_err_msg = health_check_utils.check_service_running(self.NAME,
                                                                'rsyslogd')
        if not serv_err_msg == "":
            self._set_status(0, serv_err_msg)

        return True
Example #27
0
def uniref_search(diamond=None,
                  database=None,
                  query=None,
                  seqtype=None,
                  temp=None,
                  diamond_options=None,
                  force_search=False):
    if which(diamond) is None:
        die("<diamond> is not executable as: {}".format(diamond))
    for path in [database, query, temp]:
        check_path(path)
    binary = {"nuc": "blastx", "prot": "blastp"}[seqtype]
    mode = get_mode(database)
    results = os.path.split(query)[1]
    results = os.path.join(temp, results)
    results = ".".join([results, mode, "hits"])
    command = [
        diamond,
        binary,
        "--db",
        database,
        "--query",
        query,
        "--outfmt",
        c_output_format,
        "--tmpdir",
        temp,
        "--out",
        results,
        "--id",
        get_mode(results).replace("uniref", ""),
        c_diamond_filters,
    ]
    command = " ".join([str(k) for k in command])
    command += (" " + diamond_options) if diamond_options is not None else ""
    if force_search or not os.path.exists(results):
        say("Executing:\n ", command)
        os.system(command)
    else:
        say("Using existing results file:\n ", results)
    return results
Example #28
0
def get_intra_images(mat_file, work_dir, memory=Memory(None)):
    mat = memory.cache(load_matfile)(mat_file)['SPM']
    images = {}
    images['beta_maps'] = []
    images['c_maps'] = {}
    images['t_maps'] = {}
    images['contrasts'] = {}
    for c in mat.xCon:
        name = safe_name(str(c.name))
        try:
            images['c_maps'][name] = check_path(
                os.path.join(work_dir, str(c.Vcon.fname)))
            images['t_maps'][name] = check_path(
                os.path.join(work_dir, str(c.Vspm.fname)))
            images['contrasts'][name] = c.c.tolist()
        except:
            pass  # sometimes c.Vcon is an empty array
    for i, b in enumerate(mat.Vbeta):
        images['beta_maps'].append(
            check_path(os.path.join(work_dir, str(b.fname))))
    return images
Example #29
0
def get_intra_images(mat_file, work_dir, memory=Memory(None)):
    mat = memory.cache(load_matfile)(mat_file)['SPM']
    images = {}
    images['beta_maps'] = []
    images['c_maps'] = {}
    images['t_maps'] = {}
    images['contrasts'] = {}
    for c in mat.xCon:
        name = safe_name(str(c.name))
        try:
            images['c_maps'][name] = check_path(
                os.path.join(work_dir, str(c.Vcon.fname)))
            images['t_maps'][name] = check_path(
                os.path.join(work_dir, str(c.Vspm.fname)))
            images['contrasts'][name] = c.c.tolist()
        except:
            pass  # sometimes c.Vcon is an empty array
    for i, b in enumerate(mat.Vbeta):
        images['beta_maps'].append(
            check_path(os.path.join(work_dir, str(b.fname))))
    return images
def test_windows_target(args):
    utils.check_path(os.path.join(os.environ["QTKITS"], "msvc2017_64"))
    msvc_env = R"C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build\vcvars64.bat"
    utils.check_path(msvc_env)
    qmake_path = os.path.join(os.environ["QTKITS"], "msvc2017_64", "bin",
                              "qmake.exe")
    utils.check_path(qmake_path)
Example #31
0
def plot_tsne(embeddings,
              vocab,
              output_path,
              format='png',
              random_state=0,
              normalize=False):
    """
    embeddings: numpy.array of shape (num_concepts, emb_dim)
    vocab: list[str]
    output_path: str
    format: str (optional, default 'png')
    random_state: str (optional, default 0)
    """
    assert len(embeddings) == len(vocab)
    concept2id = {w: i for i, w in enumerate(vocab)}
    all_ids = []
    offsets = [0]
    for cate in ['animals', 'vehicles', 'grammar', 'verb']:
        cate_ids = [concept2id[s] for s in categories[cate] if s in concept2id]
        all_ids += cate_ids
        offsets.append(offsets[-1] + len(cate_ids))
        oov_rate = 1 - len(cate_ids) / len(categories[cate])
        print('[tsne] {} oov rate = {}'.format(cate, oov_rate))

    original_x = embeddings[np.array(all_ids)]
    if normalize:
        original_x = original_x / np.sqrt(
            (original_x**2).sum(1))[:, np.newaxis]
    reduced_x = TSNE(2, random_state=random_state).fit_transform(original_x)

    fig = plt.figure()
    ax = fig.add_subplot(111)
    for i, cate in enumerate(['animals', 'vehicles', 'grammar', 'verb']):
        cate_x = reduced_x[offsets[i]:offsets[i + 1]]
        ax.scatter(cate_x[:, 0], cate_x[:, 1], label=cate, color=colors[i])
    ax.set_yticklabels([])
    ax.set_xticklabels([])
    ax.legend(fancybox=True, shadow=True)
    check_path(output_path)
    fig.savefig(output_path, format=format, bbox_inches='tight')
Example #32
0
def get_intra_preproc(mat_file, work_dir, n_scans, memory=Memory(None)):
    mat = memory.cache(load_matfile)(mat_file)['SPM']
    preproc = {}

    get_motion_file = False
    if len(n_scans) > 1:
        preproc['motion'] = []
        for session in mat.Sess:
            preproc['motion'].append(session.C.C.tolist())
            if session.C.C.size == 0:
                get_motion_file = True
    else:
        preproc['motion'] = [mat.Sess.C.C.tolist()]
        if mat.Sess.C.C.size == 0:
            get_motion_file = True

    swabold = check_paths(mat.xY.P)
    if len(nb.load(makeup_path(work_dir, swabold[0])).shape) == 4:
        swabold = np.unique(swabold)
    else:
        swabold = np.split(swabold, np.cumsum(n_scans)[:-1])

    if get_motion_file:
        preproc['motion'] = []

    for session in swabold:
        session_dir = find_data_dir(work_dir, check_path(session[0]))
        if get_motion_file:
            motion_file = glob.glob(os.path.join(session_dir, 'rp_*.txt'))[0]
            motion = np.fromfile(motion_file, sep=' ')
            motion = motion.reshape(motion.shape[0] / 6, 6)
            preproc['motion'].append(motion)

        if isinstance(session, (list, np.ndarray)):
            scans = [
                os.path.join(session_dir,
                             os.path.split(scan)[1].strip())
                for scan in session
            ]
            preproc.setdefault('swabold', []).append(scans)
            preproc.setdefault('abold', []).append(
                [strip_prefix_filename(scan, 2) for scan in scans])
            preproc.setdefault('bold', []).append(
                [strip_prefix_filename(scan, 3) for scan in scans])
        else:
            preproc.setdefault('swabold', []).append(session)
            preproc.setdefault('abold',
                               []).append(strip_prefix_filename(session, 2))
            preproc.setdefault('bold',
                               []).append(strip_prefix_filename(session, 3))

    return preproc
Example #33
0
def f_to_csv(featureData,filepath,year):
  """
  Takes featureData as returned by feature_extraction and a featureDict
  and formats rows = country codes, columns = feature values
  with a header by featureData keys
  """
  fkeys = ['country code']
  for f in featureData:
    fkeys.append(f)
  formatted = feature_reformat(featureData)
  formattedAgain = [] #Turn it from a dictionary into a list
  for c in formatted:
    boo = [c]
    boo.extend(formatted[c])
    formattedAgain.append(boo)

  check_path(filepath)
  with open(filepath+year+'.csv', 'wb') as f:
    writer = csv.writer(f)
    writer.writerow(fkeys)
    writer.writerows(formattedAgain)
  return True
Example #34
0
def _get_toolchain(tree, root, keep_archive=False, clean=False):
	archive = _create_name(tree, suffix=".tar.bz2")
	tree.insert(0, root)
	dir = path.join(_create_path(tree))
	archive_dir = path.join(dir, archive)
	
	if not check_path(dir, clean):
		if download(TOOLCHAIN_FORGE + archive, archive_dir):
			extract(archive_dir, dir)
			if not keep_archive:
				remove(archive_dir)
	else:
		print "! %s already exists" % dir
Example #35
0
    def check_apache_conf(self, apache_service):
        """
        Validates if Apache settings.

        :param apache_service  : service type of apache, os dependent.
                                 e.g. httpd or apache2
        :type apache_service   : string

        """
        print "Checking Apache Config......",
        conf_err_msg = health_check_utils.check_path(
            self.NAME,
            "/etc/%s/conf.d/ods-server.conf" % apache_service)
        if not conf_err_msg == "":
            self._set_status(0, conf_err_msg)

        wsgi_err_msg = health_check_utils.check_path(
            self.NAME,
            '/var/www/compass/compass.wsgi')
        if not wsgi_err_msg == "":
            self._set_status(0, wsgi_err_msg)

        return True
Example #36
0
    def __init__(self, args, verbose=True):
        self.verbose = verbose

        # define social LSTM model
        print('Building social LSTM model')
        with open(utils.check_path(args.social_conf_path), 'rb') as f:
            self._social_conf = pickle.load(f)
        self._model = SocialModel(self._social_conf, True)

        # define session
        self._sess = tf.InteractiveSession()

        # restore model parameters
        restorer = tf.train.Saver()
        ckpt = tf.train.get_checkpoint_state(
            os.path.abspath(os.path.expanduser(args.ckpt_dir)))
        print('loading model: {}'.format(ckpt.model_checkpoint_path))
        restorer.restore(self._sess, ckpt.model_checkpoint_path)

        # probability of a new pedestrian pops up if self._cur_num_peds doesn't reach self._max_num_peds
        self._new_peds_prob = args.new_peds_prob
        # maximum number of pedestrian in a frame
        self._max_num_peds = self._social_conf.maxNumPeds
        # number of pedestrian in the current frame
        self._cur_num_peds = 0
        # a list to indicate which pedestrians among all max_num_peds pedestrian exist
        self._peds_exist = [False] * self.max_num_peds
        # internal data for social LSTM model
        self._data = np.zeros((1, self._max_num_peds, 3))  # shape=(1,MNP,3)
        self._grid_data = np.zeros(
            (1, self._max_num_peds, self._max_num_peds,
             self._social_conf.grid_size**2))  # shape=(1,MNP,MNP,grid_size**2)
        self._init_data = np.zeros((args.init_num_step, self._max_num_peds,
                                    3))  # shape=(init_num_step,MNP,3)
        self._init_grid_data = np.zeros(
            (args.init_num_step, self._max_num_peds, self._max_num_peds,
             self._social_conf.grid_size**2
             ))  # shape=(init_num_step,MNP,MNP,grid_size**2)
        # shape of background, a 2-element list [width, height]
        self._bg_shape = args.bg_shape
        # number of step for initialization of a pedestrian
        self._init_num_step = args.init_num_step

        # for interpolation
        self._n_interp = args.n_interp
        self._interp_count = 0
        self._prev_data = np.zeros(self._data.shape)

        self._output_data = np.zeros(self._data.shape)
Example #37
0
def get_intra_preproc(mat_file, work_dir, n_scans, memory=Memory(None)):
    mat = memory.cache(load_matfile)(mat_file)['SPM']
    preproc = {}

    get_motion_file = False
    if len(n_scans) > 1:
        preproc['motion'] = []
        for session in mat.Sess:
            preproc['motion'].append(session.C.C.tolist())
            if session.C.C.size == 0:
                get_motion_file = True
    else:
        preproc['motion'] = [mat.Sess.C.C.tolist()]
        if mat.Sess.C.C.size == 0:
            get_motion_file = True

    swabold = check_paths(mat.xY.P)
    if len(nb.load(makeup_path(work_dir, swabold[0])).shape) == 4:
        swabold = np.unique(swabold)
    else:
        swabold = np.split(swabold, np.cumsum(n_scans)[:-1])

    if get_motion_file:
        preproc['motion'] = []

    for session in swabold:
        session_dir = find_data_dir(work_dir, check_path(session[0]))
        if get_motion_file:
            motion_file = glob.glob(os.path.join(session_dir, 'rp_*.txt'))[0]
            motion = np.fromfile(motion_file, sep=' ')
            motion = motion.reshape(motion.shape[0] / 6, 6)
            preproc['motion'].append(motion)

        if isinstance(session, (list, np.ndarray)):
            scans = [os.path.join(session_dir, os.path.split(scan)[1].strip())
                     for scan in session]
            preproc.setdefault('swabold', []).append(scans)
            preproc.setdefault('abold', []).append(
                [strip_prefix_filename(scan, 2) for scan in scans])
            preproc.setdefault('bold', []).append(
                [strip_prefix_filename(scan, 3) for scan in scans])
        else:
            preproc.setdefault('swabold', []).append(session)
            preproc.setdefault('abold', []).append(
                strip_prefix_filename(session, 2))
            preproc.setdefault('bold', []).append(
                strip_prefix_filename(session, 3))

    return preproc
Example #38
0
    def start(self):
        check_path(PATH['test_data'], create=True)
        with open(pjoin(PATH['test_data'], 'test.in'), 'w') as fw, \
             open(pjoin(PATH['data'], 'testing_data.txt')) as f, \
             open(pjoin(PATH['data'], 'correct', 'MSR_Sentence_Completion_Challenge_V1',
                 'Data', 'Holmes.machine_format.answers.txt')) as fans:
            #regex = re.compile(r'^(.*)\[([^]])\](.*)$')
            regex = re.compile(r'^(\d+[a-e]\)) +(.*)\[([^]]*)\](.*)$')
            while True:
                s = f.readline().strip('\n')
                if not s: return 

                fin_s = regex.sub(r'\2[]\4', s)
                match = regex.match(s)
                opt = [match.group(3)]
                for i in range(4):
                    s = f.readline()
                    match = regex.match(s)
                    opt.append(match.group(3))
                sans = fans.readline().strip('\n')
                ans = regex.match(sans).group(3)
                fw.write('{}\n{}\n{} {}\n'.format(
                    fin_s, ' '.join(opt), ans, opt.index(ans)
                ))
Example #39
0
    def _c2ast(self, fpath, set_name):
        save_path = os.path.join(self.save_dir, "%s_ast.pkl" % set_name)
        if check_path(save_path):
            return

        from pycparser import c_parser
        from parsetree import TreeTraverse
        cparser = c_parser.CParser()
        tparser = TreeTraverse()
        df = pd.read_pickle(fpath)
        df['ast'] = df['code'].apply(cparser.parse)
        df['pre'] = df['ast'].apply(tparser.preorder)
        df['post'] = df['ast'].apply(tparser.postorder)
        df['level'] = df['ast'].apply(tparser.levelorder)
        df.to_pickle(save_path)
Example #40
0
    def check_ntp(self):
        """Validates ntp configuration and service"""

        print "Checking NTP......",
        conf_err_msg = health_check_utils.check_path(self.NAME,
                                                     '/etc/ntp.conf')
        if not conf_err_msg == "":
            self._set_status(0, conf_err_msg)

        serv_err_msg = health_check_utils.check_service_running(self.NAME,
                                                                'ntpd')
        if not serv_err_msg == "":
            self._set_status(0, serv_err_msg)

        return True
Example #41
0
def load_intra(mat_file, memory=Memory(None), **kwargs):
    doc = {}
    mat_file = os.path.realpath(mat_file)
    doc.update(parse_path(mat_file, **kwargs))

    work_dir = os.path.split(mat_file)[0]
    mat_file = memory.cache(load_matfile)(mat_file)
    mat = mat_file['SPM']

    doc.update(get_intra_infos(mat_file, memory))

    doc['mask'] = check_path(os.path.join(work_dir, str(mat.VM.fname)))
    doc['onsets'], doc['conditions'] = get_intra_onsets(mat_file, memory)
    doc.update(get_intra_preproc(mat_file, work_dir, doc['n_scans'], memory))
    doc.update(get_intra_images(mat_file, work_dir, memory))
    doc.update(
        get_intra_design(mat_file, doc['n_scans'], doc['contrasts'], memory))

    return doc
Example #42
0
def load_intra(mat_file, memory=Memory(None), **kwargs):
    doc = {}
    mat_file = os.path.realpath(mat_file)
    doc.update(parse_path(mat_file, **kwargs))

    work_dir = os.path.split(mat_file)[0]
    mat_file = memory.cache(load_matfile)(mat_file)
    mat = mat_file['SPM']

    doc.update(get_intra_infos(mat_file, memory))

    doc['mask'] = check_path(os.path.join(work_dir, str(mat.VM.fname)))
    doc['onsets'], doc['conditions'] = get_intra_onsets(mat_file, memory)
    doc.update(get_intra_preproc(mat_file, work_dir, doc['n_scans'], memory))
    doc.update(get_intra_images(mat_file, work_dir, memory))
    doc.update(get_intra_design(
        mat_file, doc['n_scans'], doc['contrasts'], memory))

    return doc
Example #43
0
def main():
    project_dir = get_project_dir()
    flatc_path = os.path.join(project_dir, ".vendor", "installed",
                              "msvc-2017-x64-windows-release", "bin",
                              "flatc.exe")
    msg_fbs = os.path.join(project_dir, "app", "messages", "messages.fbs")
    udp_hdr_fbs = os.path.join(project_dir, "app", "messages", "udpheader.fbs")

    utils.check_path(flatc_path)
    utils.check_path(msg_fbs)
    utils.check_path(udp_hdr_fbs)

    gen_msgs = f"{flatc_path} --cpp {msg_fbs}"
    gen_udp_hdr = f"{flatc_path} --cpp {udp_hdr_fbs}"

    with utils.pushd(os.path.join(project_dir, "app", "messages")):
        utils.execute(gen_msgs.split())
        utils.execute(gen_udp_hdr.split())