Example #1
0
 def __init__(self, seed, neighbourhood_size, stopping_criterion):
     self.seed = check_random_state(seed)
     self.elite = None
     self.random_state = check_random_state(seed)
     self.neighborhood = list()
     self.neighborhood_size = neighbourhood_size
     self.stopping_criterion = stopping_criterion
     self.current_generation = 0
Example #2
0
 def __init__(self, n_topics, alpha=0.1, beta=0.01, random_state=0):
     self.n_topics = n_topics
     self.alpha = alpha
     self.beta = beta
     self.random_state = random_state
     rng = utils.check_random_state(random_state)
     self._rands = rng.rand(1024**2 // 8)
def optimal_transport_two_gaussians(mu_1,
                                    cov_1,
                                    mu_2,
                                    cov_2,
                                    nsamples=1,
                                    random_state=None):
    """
    .. seealso::

        Remark 2.31 of Peyré and Cuturi (2020)
        http://arxiv.org/pdf/1803.00567.pdf
    """
    rng = check_random_state(random_state)

    dim = len(cov_1)

    sqrt_cov_1 = la.sqrtm(cov_1)
    inv_sqrt_cov_1 = la.inv(sqrt_cov_1)

    scaling_matrix = la.sqrtm(sqrt_cov_1.dot(cov_2).dot(sqrt_cov_1))
    scaling_matrix = inv_sqrt_cov_1.dot(scaling_matrix).dot(inv_sqrt_cov_1)

    X = rng.randn(nsamples, dim)
    X = X.dot(sqrt_cov_1) + mu_1

    Y = mu_2 + (X - mu_1).dot(scaling_matrix)

    return X, Y
Example #4
0
def make_user_item_regression(random_state=123, n_user=20, n_item=20,
                              label_stdev=0.4, rank=2, bias=True,
                              first_order=True, stdev_w0=.2, stdev_w=0.3,
                              stdev_V=0.4, mean_w0=2, mean_w=5, mean_V=10):

    n_features = n_user + n_item
    n_samples = n_user * n_item
    # create design matrix
    user_cols = np.repeat(range(n_user), n_item)
    item_cols = np.array(range(n_item) * n_user) + n_user
    cols = np.hstack((user_cols, item_cols))
    rows = np.hstack((np.arange(n_item*n_user), np.arange(n_item*n_user)))

    X = sp.coo_matrix((np.ones_like(cols, dtype=np.float64), (rows, cols)))
    X = sp.csc_matrix(X)
    assert X.shape[0] == n_samples
    assert X.shape[1] == n_features

    # sample the model parameter
    random_state = check_random_state(random_state)
    w0 = random_state.normal(mean_w0, stdev_w0)
    w = random_state.normal(mean_w, stdev_w, n_features)
    V = random_state.normal(mean_V, stdev_V, (rank, n_features))

    y = ffm_predict(w0, w, V, X)
    if label_stdev > 0:
        y = random_state.normal(y, label_stdev)

    return X, y, (w0, w, V)
Example #5
0
    def __init__(
        self,
        params: Dict,
        batch_size: int = 1,
        n_sims: int = 1000,
        distortion: Tuple[float, float] = None,
        seed: int = None,
        min_bin_length: int = 4,
        normalize_samples: bool = False,
        train: bool = True,
        n_workers: int = 1,
    ) -> None:
        
        self.params = params
        self.batch_size = batch_size
        self.rng = check_random_state(seed)
        self.seed = seed
        self.distortion = distortion
        self.normalize_samples = normalize_samples
        self.n_sims = n_sims
        self.train = train
        self.n_workers = n_workers

        self.batch_seed_sequence = np.random.SeedSequence(seed)
        self.seed = seed
Example #6
0
    def __iter__(self):
        if not self.train:
            self.batch_seed_sequence = np.random.SeedSequence(self.seed)
            self.rng = check_random_state(self.seed)

        with concurrent.futures.ProcessPoolExecutor(self.n_workers) as executor:
            futures = [
                executor.submit(
                    SimulationBatch(
                        distortion=self.distortion,
                        variable_binning=self.params["variable_binning"],
                        start=self.params["start"],
                        varying_start_value=self.params["varying_start_value"],
                        n_sims=self.batch_size,
                        n_agents=self.params["n_agents"],
                        timesteps=self.params["timesteps"],
                        seed=np.random.default_rng(rng),
                        compute_fiv=self.params["compute_fiv"],
                        normalize_samples=self.normalize_samples,
                    ).next
                )
                for rng in self.batch_seed_sequence.spawn(self.n_sims // self.batch_size)
            ]
            for future in concurrent.futures.as_completed(futures):
                yield future.result()
Example #7
0
    def __init__(
        self,
        distortion: Tuple[float, float] = None,
        variable_binning = False,
        start: float = 0.5,
        varying_start_value: bool = False,
        n_sims: int = 1000,
        n_agents: int = 1000,
        timesteps: int = 200,
        seed: int = None,
        compute_fiv: bool = False,
        normalize_samples: bool = False,
    ) -> None:

        self.rng = check_random_state(seed)
        self.distortion = distortion
        if distortion is not None:
            self.distortion = Distorter(*distortion, seed=self.rng)
        if variable_binning and self.distortion is None:
            raise ValueError("Variable binning requires distortion prior")
        self.variable = variable_binning
        self.n_sims = n_sims
        self.start = start
        self.varying_start_value = varying_start_value
        self.n_agents = n_agents
        self.timesteps = timesteps
        self.compute_fiv = compute_fiv
        self.normalize_samples = normalize_samples
        self.seed = seed
        self.n_samples = 0

        self.set_priors()
def maximal_coupling_rejection(p, q, nsamples=1, random_state=None):
    """Rejection sampler to obtain pairs (X, Y) such that :math:`X \\sim p`, :math:`Y \\sim q` and the event :math:`\\{X=Y\\}` occurs with maximal probability.

    :param p:
        distribution of X

    :param q:
        distribution of Y

    Both parameter distributions ``p, q`` must have the methods

        - ``.rvs()`` to generate samples
        - ``.logpdf()`` to evaluate the log probability density function

    .. seealso::

        `scipy.stats module <https://docs.scipy.org/doc/scipy/reference/stats.html>`_
    """

    rng = check_random_state(random_state)

    for _ in range(nsamples):
        X = p.rvs(random_state=rng)
        if np.log(rng.rand()) < (q.logpdf(X) - p.logpdf(X)):
            return X, X

        Y = q.rvs(random_state=rng)
        while np.log(rng.rand()) < (p.logpdf(Y) - q.logpdf(Y)):
            Y = q.rvs(random_state=rng)

    return X, Y
Example #9
0
File: igmm.py Project: mjm522/gmr
    def __init__(self,
                 n,
                 sig_init,
                 T_nov,
                 v_min=5.0,
                 sp_min=2.5,
                 random_state=check_random_state(0)):
        """Initialize igmm
            
            Parameters:
                n - dimension of data
                sig_init - scale for initial covariance matrix
                T_nov - novelty constant 0 < T_nov <= 1, defines distance that new data point must be from
                    any other components in order to create a new component. Bigger means that more components will be
                    created and T_nov = 1 means that every point will have a new component. The authors used 0.01             
                v_min - how many updates must pass before checking if a component should be removed
                sp_min - minimum cumulative probability to keep a component
        """

        self.n_dim = n
        self.n_components = 0
        self.sig_init = sig_init
        self.T_nov = T_nov
        self.v_min = v_min
        self.sp_min = sp_min
        self.random_state = random_state
def maximal_coupling_two_bernoullis(p, q, nsamples=1, random_state=None):
    """Rejection sampler to obtain pairs (X, Y) such that :math:`X \\sim p`, :math:`Y \\sim q` and the event :math:`\\{X=Y\\}` occurs with maximal probability.

    .. seealso::

        `scipy.stats module <https://docs.scipy.org/doc/scipy/reference/stats.html>`_
    """

    rng = check_random_state(random_state)

    if p == q:
        X = rng.rand(nsamples) < p
        return X, X

    ber_p, ber_q = np.array((1 - p, p)), np.array((1 - q, q))

    min_pq = np.minimum(ber_p, ber_q)
    int_min_pq = np.sum(min_pq)

    ber_p_tld = (ber_p - min_pq) / (1.0 - int_min_pq)
    ber_q_tld = (ber_q - min_pq) / (1.0 - int_min_pq)

    gam = np.diag(min_pq) + (1.0 - int_min_pq) * np.outer(ber_p_tld, ber_q_tld)

    sample = rng.choice(4, size=nsamples, p=gam.ravel())
    X = np.array([0, 0, 1, 1])
    Y = np.array([0, 1, 0, 1])

    return X[sample], Y[sample], gam
Example #11
0
def simulate_xy(path: str,
                T: int,
                sigma2_v: float,
                sigma2_w: float,
                sigma2_x1: float,
                random_state=None):
    if os.path.exists(path):
        with open(path, mode='rb') as f:
            return pickle.load(f)
    else:
        random_state = check_random_state(random_state)
        x = np.empty(shape=T, dtype=float)
        y = np.empty(shape=T, dtype=float)
        x_0 = random_state.normal(loc=0.0, scale=np.sqrt(sigma2_x1))

        x_prev = x_0

        for n in range(T):
            v = random_state.normal(loc=0.0, scale=np.sqrt(sigma2_v))
            x[n] = x_prev / 2 + 25 * (x_prev /
                                      (1 + np.power(x_prev, 2))) + 8 * np.cos(
                                          1.2 * (n + 1)) + v
            x_prev = x[n]

            w = random_state.normal(loc=0.0, scale=np.sqrt(sigma2_w))
            y[n] = np.power(x[n], 2) / 20 + w

        x = np.append(x_0, x)
        # y = y[:, np.newaxis]

        with open(path, mode='wb') as f:
            pickle.dump((x, y), f)

        return x, y
Example #12
0
    def __init__(self,
                 n_topic: int,
                 n_iter=2000,
                 alpha=0.1,
                 beta=0.01,
                 random_state=None,
                 refresh=10):
        """

        :param n_topic: 主题数目
        :param n_iter: 迭代次数
        :param alpha: 文档主题分布超参数
        :param beta: 主题单词分布超参数
        :param random_state: 随机种子
        :param refresh: 循环多少次输出当前日志
        """
        self.n_topic = n_topic
        self.n_iter = n_iter
        self.alpha = alpha
        self.beta = beta
        # if random_state is None, check_random_state(None) does nothing
        self.random_state = random_state
        self.refresh = refresh
        self.topic_word_ = None
        self.doc_topic_ = None
        self.nzt_ = None

        if alpha <= 0 or beta <= 0:
            raise ValueError('alpha and eta must be greater than zero')

        # random number that are reused
        rng = utils.check_random_state(random_state)
        self._rands = rng.rand(1024**2 // 8)  # 1MiB of random variates
Example #13
0
def make_ldpc(n_code, d_v, d_c, systematic=False, sparse=True, seed=None):
    """Create an LDPC coding and decoding matrices H and G.

    Parameters
    ----------
    n_code: int, Length of the codewords.
    d_v: int, Number of parity-check equations including a certain bit.
    d_c: int, Number of bits in the same parity-check equation. d_c Must be
        greater or equal to d_v and must divide n.
    seed: int, seed of the random generator.
    systematic: boolean, default False. if True, constructs a systematic
    coding matrix G.

    Returns:
    --------
    H: array (n_equations, n_code). Parity check matrix of an LDPC code with
        code length `n_code` and `n_equations` number of equations.
    G: (n_code, n_bits) array coding matrix.

    """
    seed = utils.check_random_state(seed)

    H = parity_check_matrix(n_code, d_v, d_c, seed=seed)
    if systematic:
        H, G = coding_matrix_systematic(H, sparse=sparse)
    else:
        G = coding_matrix(H, sparse=sparse)
    return H, G
Example #14
0
 def __init__(self, n_topics, alpha=0.1, beta=0.01, random_state=0):
     self.n_topics = n_topics
     self.alpha = alpha
     self.beta = beta
     self.random_state = random_state
     rng = utils.check_random_state(random_state)
     self._rands = rng.rand(1024**2 // 8)
Example #15
0
    def fit(self, corpus):
        """

        :param corpus: array-like, shape (n_samples, n_features)
            Training data, where n_samples in the number of samples
            and n_features is the number of features. Sparse matrix allowed.
        :return:
        """
        random_state = utils.check_random_state(self.random_state)
        rands = self._rands.copy()

        self._initialize(corpus)  # 初始化所有有关信息

        for n_iter in range(self.n_iter):

            random_state.shuffle(rands)
            if n_iter % self.refresh == 0:
                pp = self.perplexity(corpus)
                logger.info('<{}> log likelihood: {:.0f}'.format(n_iter, pp))

            self._sample_topics(rands)
        pp = self.perplexity(corpus)
        logger.info('<{}> log likelihood: {:.0f}'.format(self.n_iter, pp))

        # 计算文档主题分布和主题单词分布
        self._count_distribution()

        # 删除计算过程中的中间值,以节约空间
        del self.TS
        del self.DS
        del self.ZS
        del self.ndz_
        return self
Example #16
0
    def fit(self):
        """
        fit the model with X for one iteration
        """
        random_state = utils.check_random_state(self.random_state)
        rands = self._rands.copy()

        self.update_potential()
        _lda._sample_topics(self.WS, self.DS, self.ZS, self.nzw, self.ndz,
                            self.nz, self.alpha, self.beta, self.beta_sum, rands,
                            self.potential)
Example #17
0
    def fit(self):
        """
        fit the model with X for one iteration
        """
        random_state = utils.check_random_state(self.random_state)
        rands = self._rands.copy()

        self.update_potential()
        _lda._sample_topics(self.WS, self.DS, self.ZS, self.nzw, self.ndz,
                            self.nz, self.alpha, self.beta, self.beta_sum,
                            rands, self.potential)
Example #18
0
def wright_fisher(N, T, selection_strength, start=0.5, random_state=None):
    rng = check_random_state(random_state)
    series = np.zeros(T)
    series[0] = int(start * N)
    for i in range(1, T):
        p_star = (
            series[i - 1]
            * (1 + selection_strength)
            / (series[i - 1] * selection_strength + N)
        )
        series[i] = rng.binomial(N, min(p_star, 1))
    return series
Example #19
0
    def __init__(self, N, mu=0.001, b=0, burn_in=1000, timesteps=10, seed=None, verbose=False):
        self.N = N
        self.mu = mu
        self.b = b
        self.burn_in = burn_in
        self.timesteps = timesteps
        self.rng = check_random_state(seed)
        self.verbose = verbose
        self.n_traits = N

        self.population = np.arange(self.N)
        self.trait_fd = []
Example #20
0
 def __init__(self,
              n_samples,
              prior,
              proposal,
              supports,
              theta_init=None,
              random_state=None):
     self.n_samples = n_samples
     self.prior = prior
     self.proposal = proposal
     self.supports = supports
     self.theta_init = theta_init
     self.random_state = check_random_state(random_state)
    def sample_gibbs_sweep(self, nb_sweeps=1, random_sate=None):

        rng = check_random_state(random_sate)
        n_rows, n_cols = self.shape

        for _ in range(nb_sweeps):
            for i in range(n_rows):
                for j in range(n_cols):
                    sum_ngbr_01 = sum(self.state_matrix[self.neighbors(i, j)])
                    cond_proba = self.cond_proba[sum_ngbr_01]
                    self.state_matrix[i, j] = rng.rand() < cond_proba

        return self.state_matrix, rng
Example #22
0
def parity_check_matrix(n_code, d_v, d_c, seed=None):
    """
    Build a regular Parity-Check Matrix H following Callager's algorithm.

    Parameters
    ----------
    n_code: int, Length of the codewords.
    d_v: int, Number of parity-check equations including a certain bit.
        Must be greater or equal to 2.
    d_c: int, Number of bits in the same parity-check equation. d_c Must be
        greater or equal to d_v and must divide n.
    seed: int, seed of the random generator.

    Returns
    -------
    H: array (n_equations, n_code). LDPC regular matrix H.
        Where n_equations = d_v * n / d_c, the total number of parity-check
        equations.

    """
    rng = utils.check_random_state(seed)

    if d_v <= 1:
        raise ValueError("""d_v must be at least 2.""")

    if d_c <= d_v:
        raise ValueError("""d_c must be greater than d_v.""")

    if n_code % d_c:
        raise ValueError("""d_c must divide n for a regular LDPC matrix H.""")

    n_equations = (n_code * d_v) // d_c

    block = np.zeros((n_equations // d_v, n_code), dtype=int)
    H = np.empty((n_equations, n_code))
    block_size = n_equations // d_v

    # Filling the first block with consecutive ones in each row of the block

    for i in range(block_size):
        for j in range(i * d_c, (i + 1) * d_c):
            block[i, j] = 1
    H[:block_size] = block

    # reate remaining blocks by permutations of the first block's columns:
    for i in range(1, d_v):
        H[i * block_size:(i + 1) * block_size] = rng.permutation(block.T).T
    H = H.astype(int)
    return H
Example #23
0
    def __init__(self, n_topics, n_iter, alpha=0.1, eta=0.01, random_state=None,
                 refresh=10):
        self.n_topics = n_topics
        self.n_iter = n_iter
        self.alpha = alpha
        self.eta = eta
        # if random_state is None, check_random_state(None) does nothing
        # other than return the current numpy RandomState
        self.random_state = random_state
        self.refresh = refresh

        if alpha <= 0 or eta <= 0:
            raise ValueError("alpha and eta must be greater than zero")

        # random numbers that are reused
        rng = utils.check_random_state(random_state)
        self._rands = rng.rand(1024**2 // 8)  # 1MiB of random variates
Example #24
0
    def __init__(self, maze, num_advs=3, rewards={'*': 10}, terminal_markers='*', action_error_prob=0, random_state=None, directions="NSEWK"):

        self.maze = Maze(maze) if not isinstance(maze, Maze) else maze
        self.rewards = rewards
        self.terminal_markers = terminal_markers
        self.action_error_prob = action_error_prob
        self.random_state = check_random_state(random_state)
        self.num_advs = num_advs
        self.area = np.product(self.maze.shape[-2:])
        self.vol = np.product(self.maze.shape)
        
        # find all available position
        self.available_state = self.maze.flat_positions_containing('.')

        # find all food court position
        self.food_court = self.maze.flat_positions_containing('&')
                
        # randomly choose position of adversary
        self.adversaries_position = np.random.choice(self.available_state, replace=False, size=self.num_advs)

        # randomly choose food court people
        self.fooder = []
        if self.food_court:
            self.fooder = np.random.choice(self.food_court, replace=False, size=3)
        
        # find stairs
        self.stairs = self.maze.flat_positions_containing('%')
        
        # dict to upstair or downstair
        self.climb = {}
        for st in self.stairs:
            if st-self.area in self.stairs:
                self.climb[st] = st-self.area
            if st+self.area in self.stairs:
                self.climb[st] = st+self.area

        self.actions = [maze_actions[direction] for direction in directions]
        self.num_actions = len(self.actions)
        self.state = None
        self.reset()
        self.num_states = self.maze.shape[0] * self.maze.shape[1] * self.maze.shape[2]
        self.current_situation = None
        self.adversary_actions = None
        self.total_hit = 0
Example #25
0
    def _fit(self, X):
        random_state = utils.check_random_state(self.random_state)
        rands = self._rands.copy()
        self._initialize(X)
        for it in range(self.n_iter):
            random_state.shuffle(rands)
            if it % self.refresh == 0:
                ll = self.loglikelihood()
                logger.info("<{}> log likelihood: {:.0f}".format(it, ll))
                self.loglikelihoods_.append(ll)
            self._sample_topics(rands)
        ll = self.loglikelihood()
        self.components_ = (self.nzw_ + self.eta).astype(float)
        self.components_ /= np.sum(self.components_, axis=1)[:, np.newaxis]
        self.topic_word_ = self.components_
        self.doc_topic_ = (self.ndz_ + self.alpha).astype(float)
        self.doc_topic_ /= np.sum(self.doc_topic_, axis=1)[:, np.newaxis]

        # delete attributes no longer needed after fitting to save memory and reduce clutter
        del self.WS
        del self.DS
        del self.ZS
        return self,self.components_,self.doc_topic_,self.topic_word_
Example #26
0
    def __init__(self,
                 mutation_level,
                 is_input_node=False,
                 _computational_layer=None,
                 cl=True,
                 seed=None,
                 input_shape=None,
                 semantics=None,
                 input_data=None,
                 semantic_input=False,
                 semantic_input_node=None,
                 computational_layer=None,
                 semantics_computational_layer=None,
                 input_node=None,
                 depth=1):

        self.mutation_level = mutation_level
        self.input_node = input_node
        self._computational_layer = _computational_layer
        self.computational_layer = computational_layer
        self.is_input_node = is_input_node
        self.cl = cl
        self.input_shape = input_shape
        self.output_shape = None
        self.out_connections = []
        self.depth = depth  # depending on computational_layer is = to previous or plus one
        self.random_state = check_random_state(seed)
        self.semantics = semantics
        self.semantic_input = semantic_input
        self.semantic_input_node = semantic_input_node
        self.input_data = input_data
        self.semantics_computational_layer = semantics_computational_layer
        if self._computational_layer is None:
            self._get_random_layer()
        if semantics is None:
            self.set_computational_layer()
        self._input_node_output_shape()
def maximal_coupling_reflexion_two_gaussians(mu_1,
                                             mu_2,
                                             cov,
                                             nsamples=1,
                                             random_state=None):

    rng = check_random_state(random_state)

    L = la.cholesky(cov, lower=True)
    z = la.solve_triangular(L, mu_1 - mu_2, lower=True, unit_diagonal=False)
    e = z / la.norm(z)

    dim = len(cov)

    X = rng.randn(nsamples, dim)
    Y = X.copy()

    gauss = multivariate_normal(mean=np.zeros(dim))  # gaussian N(0, I)
    accept = np.log(rng.rand(nsamples)) < gauss.logpdf(X + z) - gauss.logpdf(X)

    Y[accept] += z
    Y[~accept] -= np.outer(X[~accept].dot(e), 2.0 * e)  # Householder reflexion

    return X.dot(L.T) + mu_1, Y.dot(L.T) + mu_2
def common_random_number_coupling(p, q, nsamples=1, random_state=None):
    """
    :param p:
        distribution of X with methods

        - ``.rvs()`` to generate samples from distribution :math:`p`
        - ``.cdf()`` to evaluate the cumulative distribution function

    :param q:
        distribution of Y with method

        - ``.ppf()`` to evaluate the inverse cumulative distribution function

    .. seealso::

        `scipy.stats module <https://docs.scipy.org/doc/scipy/reference/stats.html>`_
    """

    rng = check_random_state(random_state)

    X = p.rvs(size=nsamples, random_state=rng)
    Y = q.ppf(p.cdf(X))

    return X, Y
Example #29
0
    def fit(self, X):
        n_samples = X.shape[0]
        random_state = utils.check_random_state(self.random_state)
        centroids = self.init_centroids(X, 'random', random_state)
        new_centroids = centroids.copy()

        clusters = np.zeros(n_samples)

        for _ in range(self.max_ite):
            for i in range(n_samples):
                distances = np.sum((centroids - X[i])**2, axis=1)
                clusters[i] = np.argsort(distances)[0]

            for i in range(self.n_clusters):
                new_centroids[i] = X[clusters == i].mean(axis=0)

            if np.sum(new_centroids == centroids) == 4:
                break
            centroids = new_centroids

        self.centroids = centroids
        self.clusters = clusters

        return self
Example #30
0
    def rvs(self, size=1, random_state=None):
        rng = check_random_state(random_state)
        unif = uniform.rvs(size=size, random_state=rng)

        return self.ppf(unif)
Example #31
0
            nsamples = data.get('nsamples')
            print('nsamples = {}'.format(nsamples))
            p = data.get('p_distribution').get('class')
            p_samples = data.get('p_distribution').get('samples')
            q = data.get('q_distribution').get('class')
            q_samples = data.get('q_distribution').get('samples')

    except FileNotFoundError:
        print('No previous samples were saved under {}'.format(file_name))
        print('Generating samples may take a while')

        p, q = p_distribution(), q_distribution()

        nsamples = int(1e4)
        seed = 0
        rng = check_random_state(seed)
        unif_01 = rng.rand(nsamples)

        p_samples, q_samples = p.ppf(unif_01), q.ppf(unif_01)
        data = {
            'seed': seed,
            'nsamples': nsamples,
            'p_distribution': {
                'class': p,
                'samples': p_samples
            },
            'q_distribution': {
                'class': q,
                'samples': q_samples
            }
        }
Example #32
0
    def fit(self, X, y, sample_weight=None, check_input=True):
        """Build a decision tree from the training set (X, y).

        Parameters
        ----------
        X : array-like or sparse matrix, shape = [n_samples, n_features]
            The training input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csc_matrix``.

        y : array-like, shape = [n_samples] or [n_samples, n_outputs]
            The target values (class labels in classification, real numbers in
            regression). In the regression case, use ``dtype=np.float64`` and
            ``order='C'`` for maximum efficiency.

        sample_weight : array-like, shape = [n_samples] or None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. In the case of
            classification, splits are also ignored if they would result in any
            single class carrying a negative weight in either child node.

        check_input : boolean, (default=True)
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you do.

        Returns
        -------
        self : object
            Returns self.
        """
        random_state = check_random_state(self.random_state)
        if check_input:
            X = check_array(X, dtype=DTYPE)

        # Determine output settings
        n_samples, self.n_features_ = X.shape
        is_classification = isinstance(self, ClassifierMixin)

        y = np.atleast_1d(y)
        expanded_class_weight = None

        if y.ndim == 1:
            # reshape is necessary to preserve the data contiguity against vs
            # [:, np.newaxis] that does not.
            y = np.reshape(y, (-1, 1))

        self.n_outputs_ = y.shape[1]

        if is_classification:
            y = np.copy(y)

            self.classes_ = []
            self.n_classes_ = []

            if self.class_weight is not None:
                y_original = np.copy(y)

            for k in range(self.n_outputs_):
                classes_k, y[:, k] = np.unique(y[:, k], return_inverse=True)
                self.classes_.append(classes_k)
                self.n_classes_.append(classes_k.shape[0])

            if self.class_weight is not None:
                expanded_class_weight = compute_sample_weight(
                    self.class_weight, y_original)

        else:
            self.classes_ = [None] * self.n_outputs_
            self.n_classes_ = [1] * self.n_outputs_

        self.n_classes_ = np.array(self.n_classes_, dtype=np.intp)

        if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous:
            y = np.ascontiguousarray(y, dtype=DOUBLE)

        # Check parameters
        max_depth = ((2 ** 31) - 1 if self.max_depth is None
                     else self.max_depth)
        max_leaf_nodes = (-1 if self.max_leaf_nodes is None
                          else self.max_leaf_nodes)

        if isinstance(self.max_features, string_types):
            if self.max_features == "auto":
                if is_classification:
                    max_features = max(1, int(np.sqrt(self.n_features_)))
                else:
                    max_features = self.n_features_
            elif self.max_features == "sqrt":
                max_features = max(1, int(np.sqrt(self.n_features_)))
            elif self.max_features == "log2":
                max_features = max(1, int(np.log2(self.n_features_)))
            else:
                raise ValueError(
                    'Invalid value for max_features. Allowed string '
                    'values are "auto", "sqrt" or "log2".')
                
        elif self.max_features is None:
            max_features = self.n_features_
        elif isinstance(self.max_features, (numbers.Integral, np.integer)):
            max_features = self.max_features
        else:  # float
            if self.max_features > 0.0:
                max_features = max(1, int(self.max_features * self.n_features_))
            else:
                max_features = 0

        self.max_features_ = max_features

        if len(y) != n_samples:
            raise ValueError("Number of labels=%d does not match "
                             "number of samples=%d" % (len(y), n_samples))
        if self.min_samples_split <= 0:
            raise ValueError("min_samples_split must be greater than zero.")
        if self.min_samples_leaf <= 0:
            raise ValueError("min_samples_leaf must be greater than zero.")
        if not 0 <= self.min_weight_fraction_leaf <= 0.5:
            raise ValueError("min_weight_fraction_leaf must in [0, 0.5]")
        if max_depth <= 0:
            raise ValueError("max_depth must be greater than zero. ")
        if not (0 < max_features <= self.n_features_):
            raise ValueError("max_features must be in (0, n_features]")
        if not isinstance(max_leaf_nodes, (numbers.Integral, np.integer)):
            raise ValueError("max_leaf_nodes must be integral number but was "
                             "%r" % max_leaf_nodes)
        if -1 < max_leaf_nodes < 2:
            raise ValueError(("max_leaf_nodes {0} must be either smaller than "
                              "0 or larger than 1").format(max_leaf_nodes))

        if sample_weight is not None:
            if (getattr(sample_weight, "dtype", None) != DOUBLE or
                    not sample_weight.flags.contiguous):
                sample_weight = np.ascontiguousarray(
                    sample_weight, dtype=DOUBLE)
            if len(sample_weight.shape) > 1:
                raise ValueError("Sample weights array has more "
                                 "than one dimension: %d" %
                                 len(sample_weight.shape))
            if len(sample_weight) != n_samples:
                raise ValueError("Number of weights=%d does not match "
                                 "number of samples=%d" %
                                 (len(sample_weight), n_samples))

        if expanded_class_weight is not None:
            if sample_weight is not None:
                sample_weight = sample_weight * expanded_class_weight
            else:
                sample_weight = expanded_class_weight

        # Set min_weight_leaf from min_weight_fraction_leaf
        if self.min_weight_fraction_leaf != 0. and sample_weight is not None:
            min_weight_leaf = (self.min_weight_fraction_leaf *
                               np.sum(sample_weight))
        else:
            min_weight_leaf = 0.

        # Set min_samples_split sensibly
        min_samples_split = max(self.min_samples_split,
                                2 * self.min_samples_leaf)

        # Build tree
        criterion = self.criterion
        if not isinstance(criterion, Criterion):
            if is_classification:
                criterion = CRITERIA_CLF[self.criterion](self.n_outputs_,
                                                         self.n_classes_)
            else:
                criterion = CRITERIA_REG[self.criterion](self.n_outputs_)

        SPLITTERS = DENSE_SPLITTERS

        splitter = self.splitter
        if not isinstance(self.splitter, Splitter):
            splitter = SPLITTERS[self.splitter](criterion,
                                                self.max_features_,
                                                self.min_samples_leaf,
                                                min_weight_leaf,
                                                random_state)

        self.tree_ = Tree(self.n_features_, self.n_classes_, self.n_outputs_)

        # Use BestFirst if max_leaf_nodes given; use DepthFirst otherwise
        if max_leaf_nodes < 0:
            builder = DepthFirstTreeBuilder(splitter, min_samples_split,
                                            self.min_samples_leaf,
                                            min_weight_leaf,
                                            max_depth)
        else:
            builder = BestFirstTreeBuilder(splitter, min_samples_split,
                                           self.min_samples_leaf,
                                           min_weight_leaf,
                                           max_depth,
                                           max_leaf_nodes)

        builder.build(self.tree_, X, y, sample_weight)

        if self.n_outputs_ == 1:
            self.n_classes_ = self.n_classes_[0]
            self.classes_ = self.classes_[0]

        return self
Example #33
0
def _random_init(X, n_components, random_state=None):
    rs = check_random_state(random_state)
    return [rs.rand(X.shape[i], n_components) for i in range(len(X.shape))]
Example #34
0
def smacof(similarities, metric=True, n_components=2, init=None, n_init=8,
           n_jobs=1, max_iter=300, verbose=0, eps=1e-3, random_state=None):
    """
    Computes multidimensional scaling using SMACOF (Scaling by Majorizing a
    Complicated Function) algorithm

    The SMACOF algorithm is a multidimensional scaling algorithm: it minimizes
    a objective function, the *stress*, using a majorization technique. The
    Stress Majorization, also known as the Guttman Transform, guarantees a
    monotone convergence of Stress, and is more powerful than traditional
    techniques such as gradient descent.

    The SMACOF algorithm for metric MDS can summarized by the following steps:

    1. Set an initial start configuration, randomly or not.
    2. Compute the stress
    3. Compute the Guttman Transform
    4. Iterate 2 and 3 until convergence.

    The nonmetric algorithm adds a monotonic regression steps before computing
    the stress.

    Parameters
    ----------
    similarities : symmetric ndarray, shape (n_samples, n_samples)
        similarities between the points

    metric : boolean, optional, default: True
        compute metric or nonmetric SMACOF algorithm

    n_components : int, optional, default: 2
        number of dimension in which to immerse the similarities
        overridden if initial array is provided.

    init : {None or ndarray of shape (n_samples, n_components)}, optional
        if None, randomly chooses the initial configuration
        if ndarray, initialize the SMACOF algorithm with this array

    n_init : int, optional, default: 8
        Number of time the smacof algorithm will be run with different
        initialisation. The final results will be the best output of the
        n_init consecutive runs in terms of stress.

    n_jobs : int, optional, default: 1

        The number of jobs to use for the computation. This works by breaking
        down the pairwise matrix into n_jobs even slices and computing them in
        parallel.

        If -1 all CPUs are used. If 1 is given, no parallel computing code is
        used at all, which is useful for debugging. For n_jobs below -1,
        (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one
        are used.

    max_iter : int, optional, default: 300
        Maximum number of iterations of the SMACOF algorithm for a single run

    verbose : int, optional, default: 0
        level of verbosity

    eps : float, optional, default: 1e-6
        relative tolerance w.r.t stress to declare converge

    random_state : integer or numpy.RandomState, optional
        The generator used to initialize the centers. If an integer is
        given, it fixes the seed. Defaults to the global numpy random
        number generator.

    Returns
    -------
    X : ndarray (n_samples,n_components)
        Coordinates of the n_samples points in a n_components-space

    stress : float
        The final value of the stress (sum of squared distance of the
        disparities and the distances for all constrained points)

    Notes
    -----
    "Modern Multidimensional Scaling - Theory and Applications" Borg, I.;
    Groenen P. Springer Series in Statistics (1997)

    "Nonmetric multidimensional scaling: a numerical method" Kruskal, J.
    Psychometrika, 29 (1964)

    "Multidimensional scaling by optimizing goodness of fit to a nonmetric
    hypothesis" Kruskal, J. Psychometrika, 29, (1964)
    """

    similarities, = check_arrays(similarities, sparse_format='dense')
    random_state = check_random_state(random_state)

    if hasattr(init, '__array__'):
        init = np.asarray(init).copy()
        if not n_init == 1:
            warnings.warn(
                'Explicit initial positions passed: '
                'performing only one init of the MDS instead of %d'
                % n_init)
            n_init = 1

    best_pos, best_stress = None, None

    if n_jobs == 1:
        for it in range(n_init):
            pos, stress = _smacof_single(similarities, metric=metric,
                                         n_components=n_components, init=init,
                                         max_iter=max_iter, verbose=verbose,
                                         eps=eps, random_state=random_state)
            if best_stress is None or stress < best_stress:
                best_stress = stress
                best_pos = pos.copy()
    else:
        seeds = random_state.randint(np.iinfo(np.int32).max, size=n_init)
        results = Parallel(n_jobs=n_jobs, verbose=max(verbose - 1, 0))(
            delayed(_smacof_single)(
                similarities, metric=metric, n_components=n_components,
                init=init, max_iter=max_iter, verbose=verbose, eps=eps,
                random_state=seed)
            for seed in seeds)
        positions, stress = zip(*results)
        best = np.argmin(stress)
        best_stress = stress[best]
        best_pos = positions[best]
    return best_pos, best_stress
Example #35
0
def _smacof_single(similarities, metric=True, n_components=2, init=None,
                   max_iter=300, verbose=0, eps=1e-3, random_state=None):
    """
    Computes multidimensional scaling using SMACOF algorithm

    Parameters
    ----------
    similarities: symmetric ndarray, shape [n * n]
        similarities between the points

    metric: boolean, optional, default: True
        compute metric or nonmetric SMACOF algorithm

    n_components: int, optional, default: 2
        number of dimension in which to immerse the similarities
        overwritten if initial array is provided.

    init: {None or ndarray}, optional
        if None, randomly chooses the initial configuration
        if ndarray, initialize the SMACOF algorithm with this array

    max_iter: int, optional, default: 300
        Maximum number of iterations of the SMACOF algorithm for a single run

    verbose: int, optional, default: 0
        level of verbosity

    eps: float, optional, default: 1e-6
        relative tolerance w.r.t stress to declare converge

    random_state: integer or numpy.RandomState, optional
        The generator used to initialize the centers. If an integer is
        given, it fixes the seed. Defaults to the global numpy random
        number generator.

    Returns
    -------
    X: ndarray (n_samples, n_components), float
               coordinates of the n_samples points in a n_components-space

    stress_: float
        The final value of the stress (sum of squared distance of the
        disparities and the distances for all constrained points)

    """
    n_samples = similarities.shape[0]
    random_state = check_random_state(random_state)

    if similarities.shape[0] != similarities.shape[1]:
        raise ValueError("similarities must be a square array (shape=%d)" %
                         n_samples)
    if not np.allclose(similarities, similarities.T):
        raise ValueError("similarities must be symmetric")

    sim_flat = ((1 - np.tri(n_samples)) * similarities).ravel()
    sim_flat_w = sim_flat[sim_flat != 0]
    if init is None:
        # Randomly choose initial configuration
        X = random_state.rand(n_samples * n_components)
        X = X.reshape((n_samples, n_components))
    else:
        # overrides the parameter p
        n_components = init.shape[1]
        if n_samples != init.shape[0]:
            raise ValueError("init matrix should be of shape (%d, %d)" %
                             (n_samples, n_components))
        X = init

    old_stress = None
    ir = IsotonicRegression()
    for it in range(max_iter):
        # Compute distance and monotonic regression
        dis = euclidean_distances(X)

        if metric:
            disparities = similarities
        else:
            dis_flat = dis.ravel()
            # similarities with 0 are considered as missing values
            dis_flat_w = dis_flat[sim_flat != 0]

            # Compute the disparities using a monotonic regression
            disparities_flat = ir.fit_transform(sim_flat_w, dis_flat_w)
            disparities = dis_flat.copy()
            disparities[sim_flat != 0] = disparities_flat
            disparities = disparities.reshape((n_samples, n_samples))
            disparities *= np.sqrt((n_samples * (n_samples - 1) / 2) /
                                   (disparities ** 2).sum())

        # Compute stress
        stress = ((dis.ravel() - disparities.ravel()) ** 2).sum() / 2

        # Update X using the Guttman transform
        dis[dis == 0] = 1e-5
        ratio = disparities / dis
        B = - ratio
        B[np.arange(len(B)), np.arange(len(B))] += ratio.sum(axis=1)
        X = 1. / n_samples * np.dot(B, X)

        dis = np.sqrt((X ** 2).sum(axis=1)).sum()
        if verbose >= 2:
            print('it: %d, stress %s' % (it, stress))
        if old_stress is not None:
            if(old_stress - stress / dis) < eps:
                if verbose:
                    print('breaking at iteration %d with stress %s' % (it,
                                                                       stress))
                break
        old_stress = stress / dis

    return X, stress
Example #36
0
def main():
    algorithm = args.algorithm
    path = './auto_regulation_{}'.format(algorithm)
    random_state = check_random_state(1)

    if not os.path.exists(path):
        os.makedirs(path)

    t, y = load_data('./data/auto_regulation.pickle')
    n_samples = args.n_samples
    n_particles = args.n_particles
    burn_in = args.burn_in
    thinning = args.thinning

    state_init = np.array([8, 8, 8, 5])

    const = {
        'k': 10,
        'c5': 0.1,
        'c6': 0.9,
        'observation_std': 2.0,
        'times': np.concatenate(([0.0], t))
    }

    prior = Prior([
        # U(-7,2) as in the paper. However, in SciPy, the distribution is given as U(loc,loc+scale).
        stats.uniform(-7, 9),
        stats.uniform(-7, 9),
        stats.uniform(-7, 9),
        stats.uniform(-7, 9),
        stats.uniform(-7, 9),
        stats.uniform(-7, 9)
    ])

    proposal = Proposal([
        Distribution(stats.norm, scale=0.08),
        Distribution(stats.norm, scale=0.08),
        Distribution(stats.norm, scale=0.08),
        Distribution(stats.norm, scale=0.08),
        Distribution(stats.norm, scale=0.08),
        Distribution(stats.norm, scale=0.08)
    ])

    theta_init = stats.uniform.rvs(loc=-7, scale=9, size=6)
    random_state = check_random_state(1)

    if algorithm == 'abcmh':
        alpha = args.alpha
        hpr_p = args.hpr_p
        kernel = args.kernel

        mcmc = ABCAutoRegulation(n_samples=n_samples,
                                 n_particles=n_particles,
                                 alpha=alpha,
                                 hpr_p=hpr_p,
                                 state_init=state_init,
                                 const=const,
                                 kernel=kernel,
                                 prior=prior,
                                 proposal=proposal,
                                 theta_init=theta_init,
                                 random_state=random_state)
    else:
        mcmc = ParticleAutoRegulation(n_samples=n_samples,
                                      n_particles=n_particles,
                                      state_init=state_init,
                                      const=const,
                                      prior=prior,
                                      proposal=proposal,
                                      theta_init=theta_init,
                                      random_state=random_state)

    sampled_theta_path = os.path.join(path, 'sampled_theta.pickle')

    if os.path.exists(sampled_theta_path):
        with open(sampled_theta_path, 'rb') as f:
            theta = pickle.load(f)
    else:
        theta = mcmc.do_inference(y)

        with open(sampled_theta_path, 'wb') as f:
            pickle.dump(theta, f)

    theta_true = np.log(np.array([0.1, 0.7, 0.35, 0.2, 0.3, 0.1]))
    theta = np.exp(theta)
    theta = theta[burn_in::thinning]
    truth = np.exp(theta_true)
    pretty_names = [r'$c_1$', r'$c_2$', r'$c_3$', r'$c_4$', r'$c_7$', r'$c_8$']

    for i in range(theta.shape[1]):
        param_name = pretty_names[i]
        param_values = theta[:, i]

        fig, (ax1, ax2, ax3) = plt.subplots(3, 1, dpi=300)
        plt.suptitle(param_name)

        ax1.set_title('Trace plot')
        ax1.plot(param_values, color='dimgrey')
        ax1.axhline(truth[i], color='crimson', lw=2)

        plot_acf(param_values, lags=100, ax=ax2, color='dimgrey')

        ax3.set_title('Histogram')
        ax3.hist(param_values, density=True, bins=30, color='dimgrey')
        ax3.axvline(truth[i], color='crimson', lw=2)

        plt.show()
Example #37
0
    def fit(self, X, y, sample_weight=None, check_input=True):
        """Build a decision tree from the training set (X, y).

        Parameters
        ----------
        X : array-like or sparse matrix, shape = [n_samples, n_features]
            The training input samples. Internally, it will be converted to
            ``dtype=np.float32`` and if a sparse matrix is provided
            to a sparse ``csc_matrix``.

        y : array-like, shape = [n_samples] or [n_samples, n_outputs]
            The target values (class labels in classification, real numbers in
            regression). In the regression case, use ``dtype=np.float64`` and
            ``order='C'`` for maximum efficiency.

        sample_weight : array-like, shape = [n_samples] or None
            Sample weights. If None, then samples are equally weighted. Splits
            that would create child nodes with net zero or negative weight are
            ignored while searching for a split in each node. In the case of
            classification, splits are also ignored if they would result in any
            single class carrying a negative weight in either child node.

        check_input : boolean, (default=True)
            Allow to bypass several input checking.
            Don't use this parameter unless you know what you do.

        Returns
        -------
        self : object
            Returns self.
        """
        random_state = check_random_state(self.random_state)
        if check_input:
            X = check_array(X, dtype=DTYPE)

        # Determine output settings
        n_samples, self.n_features_ = X.shape
        is_classification = isinstance(self, ClassifierMixin)

        y = np.atleast_1d(y)
        expanded_class_weight = None

        if y.ndim == 1:
            # reshape is necessary to preserve the data contiguity against vs
            # [:, np.newaxis] that does not.
            y = np.reshape(y, (-1, 1))

        self.n_outputs_ = y.shape[1]

        if is_classification:
            y = np.copy(y)

            self.classes_ = []
            self.n_classes_ = []

            if self.class_weight is not None:
                y_original = np.copy(y)

            for k in range(self.n_outputs_):
                classes_k, y[:, k] = np.unique(y[:, k], return_inverse=True)
                self.classes_.append(classes_k)
                self.n_classes_.append(classes_k.shape[0])

            if self.class_weight is not None:
                expanded_class_weight = compute_sample_weight(
                    self.class_weight, y_original)

        else:
            self.classes_ = [None] * self.n_outputs_
            self.n_classes_ = [1] * self.n_outputs_

        self.n_classes_ = np.array(self.n_classes_, dtype=np.intp)

        if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous:
            y = np.ascontiguousarray(y, dtype=DOUBLE)

        # Check parameters
        max_depth = ((2**31) - 1 if self.max_depth is None else self.max_depth)
        max_leaf_nodes = (-1 if self.max_leaf_nodes is None else
                          self.max_leaf_nodes)

        if isinstance(self.max_features, string_types):
            if self.max_features == "auto":
                if is_classification:
                    max_features = max(1, int(np.sqrt(self.n_features_)))
                else:
                    max_features = self.n_features_
            elif self.max_features == "sqrt":
                max_features = max(1, int(np.sqrt(self.n_features_)))
            elif self.max_features == "log2":
                max_features = max(1, int(np.log2(self.n_features_)))
            else:
                raise ValueError(
                    'Invalid value for max_features. Allowed string '
                    'values are "auto", "sqrt" or "log2".')

        elif self.max_features is None:
            max_features = self.n_features_
        elif isinstance(self.max_features, (numbers.Integral, np.integer)):
            max_features = self.max_features
        else:  # float
            if self.max_features > 0.0:
                max_features = max(1,
                                   int(self.max_features * self.n_features_))
            else:
                max_features = 0

        self.max_features_ = max_features

        if len(y) != n_samples:
            raise ValueError("Number of labels=%d does not match "
                             "number of samples=%d" % (len(y), n_samples))
        if self.min_samples_split <= 0:
            raise ValueError("min_samples_split must be greater than zero.")
        if self.min_samples_leaf <= 0:
            raise ValueError("min_samples_leaf must be greater than zero.")
        if not 0 <= self.min_weight_fraction_leaf <= 0.5:
            raise ValueError("min_weight_fraction_leaf must in [0, 0.5]")
        if max_depth <= 0:
            raise ValueError("max_depth must be greater than zero. ")
        if not (0 < max_features <= self.n_features_):
            raise ValueError("max_features must be in (0, n_features]")
        if not isinstance(max_leaf_nodes, (numbers.Integral, np.integer)):
            raise ValueError("max_leaf_nodes must be integral number but was "
                             "%r" % max_leaf_nodes)
        if -1 < max_leaf_nodes < 2:
            raise ValueError(("max_leaf_nodes {0} must be either smaller than "
                              "0 or larger than 1").format(max_leaf_nodes))

        if sample_weight is not None:
            if (getattr(sample_weight, "dtype", None) != DOUBLE
                    or not sample_weight.flags.contiguous):
                sample_weight = np.ascontiguousarray(sample_weight,
                                                     dtype=DOUBLE)
            if len(sample_weight.shape) > 1:
                raise ValueError("Sample weights array has more "
                                 "than one dimension: %d" %
                                 len(sample_weight.shape))
            if len(sample_weight) != n_samples:
                raise ValueError("Number of weights=%d does not match "
                                 "number of samples=%d" %
                                 (len(sample_weight), n_samples))

        if expanded_class_weight is not None:
            if sample_weight is not None:
                sample_weight = sample_weight * expanded_class_weight
            else:
                sample_weight = expanded_class_weight

        # Set min_weight_leaf from min_weight_fraction_leaf
        if self.min_weight_fraction_leaf != 0. and sample_weight is not None:
            min_weight_leaf = (self.min_weight_fraction_leaf *
                               np.sum(sample_weight))
        else:
            min_weight_leaf = 0.

        # Set min_samples_split sensibly
        min_samples_split = max(self.min_samples_split,
                                2 * self.min_samples_leaf)

        # Build tree
        criterion = self.criterion
        if not isinstance(criterion, Criterion):
            if is_classification:
                criterion = CRITERIA_CLF[self.criterion](self.n_outputs_,
                                                         self.n_classes_)
            else:
                criterion = CRITERIA_REG[self.criterion](self.n_outputs_)

        SPLITTERS = DENSE_SPLITTERS

        splitter = self.splitter
        if not isinstance(self.splitter, Splitter):
            splitter = SPLITTERS[self.splitter](criterion, self.max_features_,
                                                self.min_samples_leaf,
                                                min_weight_leaf, random_state)

        self.tree_ = Tree(self.n_features_, self.n_classes_, self.n_outputs_)

        # Use BestFirst if max_leaf_nodes given; use DepthFirst otherwise
        if max_leaf_nodes < 0:
            builder = DepthFirstTreeBuilder(splitter, min_samples_split,
                                            self.min_samples_leaf,
                                            min_weight_leaf, max_depth)
        else:
            builder = BestFirstTreeBuilder(splitter, min_samples_split,
                                           self.min_samples_leaf,
                                           min_weight_leaf, max_depth,
                                           max_leaf_nodes)

        builder.build(self.tree_, X, y, sample_weight)

        if self.n_outputs_ == 1:
            self.n_classes_ = self.n_classes_[0]
            self.classes_ = self.classes_[0]

        return self