Example #1
0
def test_jacobian_plowrank():
    for get_task in nonlinear_tasks:
        loader, lc, parameters, model, function, n_output = get_task()
        generator = Jacobian(layer_collection=lc,
                             model=model,
                             function=function,
                             n_output=n_output)
        PMat_lowrank = PMatLowRank(generator=generator, examples=loader)
        dw = random_pvector(lc, device=device)
        dw = dw / dw.norm()
        dense_tensor = PMat_lowrank.get_dense_tensor()

        # Test get_diag
        check_tensors(torch.diag(dense_tensor),
                      PMat_lowrank.get_diag(),
                      eps=1e-4)

        # Test frobenius
        frob_PMat = PMat_lowrank.frobenius_norm()
        frob_direct = (dense_tensor**2).sum()**.5
        check_ratio(frob_direct, frob_PMat)

        # Test trace
        trace_PMat = PMat_lowrank.trace()
        trace_direct = torch.trace(dense_tensor)
        check_ratio(trace_PMat, trace_direct)

        # Test mv
        mv_direct = torch.mv(dense_tensor, dw.get_flat_representation())
        mv = PMat_lowrank.mv(dw)
        check_tensors(mv_direct, mv.get_flat_representation())

        # Test vTMV
        check_ratio(torch.dot(mv_direct, dw.get_flat_representation()),
                    PMat_lowrank.vTMv(dw))

        # Test solve
        # We will try to recover mv, which is in the span of the
        # low rank matrix
        regul = 1e-3
        mmv = PMat_lowrank.mv(mv)
        mv_using_inv = PMat_lowrank.solve(mmv, regul=regul)
        check_tensors(mv.get_flat_representation(),
                      mv_using_inv.get_flat_representation(),
                      eps=1e-2)
        # Test inv TODO

        # Test add, sub, rmul

        check_tensors(1.23 * PMat_lowrank.get_dense_tensor(),
                      (1.23 * PMat_lowrank).get_dense_tensor())
def classify(directory, label, samples, responses, v):
    images = os.listdir(path="./training_data/" + directory)
    for i in images:
        actual = str("./training_data/" + directory + i)
        print(actual)
        im = cv2.imread(actual)

        img = utils.preprocess(im)

        pre_processed = img.copy()

        #################      Now finding Contours         ###################

        i, contours, h = cv2.findContours(image=img,
                                          mode=cv2.RETR_LIST,
                                          method=cv2.CHAIN_APPROX_SIMPLE)

        keys = [i for i in range(48, 58)]
        for cnt in contours:
            area = cv2.contourArea(cnt)
            if utils.check_rectangle(area):
                if v:
                    print("AREA: %s" % (area))
                [x, y, w, h] = cv2.boundingRect(cnt)
                if utils.check_ratio(x, y, w, h):
                    cv2.rectangle(pre_processed, (x, y), (x + w, y + h),
                                  (0, 0, 255), 2)
                    responses.append(label)
                    sample = utils.roismall(pre_processed, x, y, w, h)
                    samples = np.append(samples, sample, 0)
                    if v:
                        print("Rec: %s" % directory[:1])
                elif v:
                    print("Wrong Ration %s" % utils.ratio(x, y, w, h))
            elif area > 5000 and area < 200000:
                if v:
                    print("UNRECOGNIZED area: %s" % (area))

    return samples, responses
Example #3
0
def test_jacobian_plowrank():
    for get_task in nonlinear_tasks:
        loader, lc, parameters, model, function, n_output = get_task()
        model.train()
        generator = Jacobian(layer_collection=lc,
                             model=model,
                             loader=loader,
                             function=function,
                             n_output=n_output)
        PMat_lowrank = PMatLowRank(generator)
        dw = random_pvector(lc, device=device)
        dense_tensor = PMat_lowrank.get_dense_tensor()

        # Test get_diag
        check_tensors(torch.diag(dense_tensor),
                      PMat_lowrank.get_diag(),
                      eps=1e-4)

        # Test frobenius
        frob_PMat = PMat_lowrank.frobenius_norm()
        frob_direct = (dense_tensor**2).sum()**.5
        check_ratio(frob_direct, frob_PMat)

        # Test trace
        trace_PMat = PMat_lowrank.trace()
        trace_direct = torch.trace(dense_tensor)
        check_ratio(trace_PMat, trace_direct)

        # Test mv
        mv_direct = torch.mv(dense_tensor, dw.get_flat_representation())
        check_tensors(mv_direct,
                      PMat_lowrank.mv(dw).get_flat_representation())

        # Test vTMV
        check_ratio(torch.dot(mv_direct, dw.get_flat_representation()),
                    PMat_lowrank.vTMv(dw))

        # Test solve TODO
        # Test inv TODO

        # Test add, sub, rmul

        check_tensors(1.23 * PMat_lowrank.get_dense_tensor(),
                      (1.23 * PMat_lowrank).get_dense_tensor())
Example #4
0
def test_jacobian_pblockdiag():
    for get_task in nonlinear_tasks:
        loader, lc, parameters, model, function, n_output = get_task()
        model.train()
        generator = Jacobian(layer_collection=lc,
                             model=model,
                             loader=loader,
                             function=function,
                             n_output=n_output)
        PMat_blockdiag = PMatBlockDiag(generator)
        dw = random_pvector(lc, device=device)
        dense_tensor = PMat_blockdiag.get_dense_tensor()

        # Test get_diag
        check_tensors(torch.diag(dense_tensor),
                      PMat_blockdiag.get_diag())

        # Test frobenius
        frob_PMat = PMat_blockdiag.frobenius_norm()
        frob_direct = (dense_tensor**2).sum()**.5
        check_ratio(frob_direct, frob_PMat)

        # Test trace
        trace_PMat = PMat_blockdiag.trace()
        trace_direct = torch.trace(dense_tensor)
        check_ratio(trace_PMat, trace_direct)

        # Test mv
        mv_direct = torch.mv(dense_tensor, dw.get_flat_representation())
        check_tensors(mv_direct,
                      PMat_blockdiag.mv(dw).get_flat_representation())

        # Test vTMV
        check_ratio(torch.dot(mv_direct, dw.get_flat_representation()),
                    PMat_blockdiag.vTMv(dw))

        # Test solve
        regul = 1e-3
        Mv_regul = torch.mv(dense_tensor +
                            regul * torch.eye(PMat_blockdiag.size(0),
                                              device=device),
                            dw.get_flat_representation())
        Mv_regul = PVector(layer_collection=lc,
                           vector_repr=Mv_regul)
        dw_using_inv = PMat_blockdiag.solve(Mv_regul, regul=regul)
        check_tensors(dw.get_flat_representation(),
                      dw_using_inv.get_flat_representation(), eps=5e-3)

        # Test inv
        PMat_inv = PMat_blockdiag.inverse(regul=regul)
        check_tensors(dw.get_flat_representation(),
                      PMat_inv.mv(PMat_blockdiag.mv(dw) + regul * dw)
                      .get_flat_representation(), eps=5e-3)

        # Test add, sub, rmul
        loader, lc, parameters, model, function, n_output = get_task()
        model.train()
        generator = Jacobian(layer_collection=lc,
                             model=model,
                             loader=loader,
                             function=function,
                             n_output=n_output)
        PMat_blockdiag2 = PMatBlockDiag(generator)

        check_tensors(PMat_blockdiag.get_dense_tensor() +
                      PMat_blockdiag2.get_dense_tensor(),
                      (PMat_blockdiag + PMat_blockdiag2)
                      .get_dense_tensor())
        check_tensors(PMat_blockdiag.get_dense_tensor() -
                      PMat_blockdiag2.get_dense_tensor(),
                      (PMat_blockdiag - PMat_blockdiag2)
                      .get_dense_tensor())
        check_tensors(1.23 * PMat_blockdiag.get_dense_tensor(),
                      (1.23 * PMat_blockdiag).get_dense_tensor())
Example #5
0
def test_jacobian_pdiag_vs_pdense():
    for get_task in nonlinear_tasks:
        loader, lc, parameters, model, function, n_output = get_task()
        model.train()
        generator = Jacobian(layer_collection=lc,
                             model=model,
                             loader=loader,
                             function=function,
                             n_output=n_output)
        PMat_diag = PMatDiag(generator)
        PMat_dense = PMatDense(generator)
        dw = random_pvector(lc, device=device)

        # Test get_dense_tensor
        matrix_diag = PMat_diag.get_dense_tensor()
        matrix_dense = PMat_dense.get_dense_tensor()
        check_tensors(torch.diag(matrix_diag),
                      torch.diag(matrix_dense))
        assert torch.norm(matrix_diag -
                          torch.diag(torch.diag(matrix_diag))) < 1e-5

        # Test trace
        check_ratio(torch.trace(matrix_diag),
                    PMat_diag.trace())

        # Test frobenius
        check_ratio(torch.norm(matrix_diag),
                    PMat_diag.frobenius_norm())

        # Test mv
        mv_direct = torch.mv(matrix_diag, dw.get_flat_representation())
        mv_PMat_diag = PMat_diag.mv(dw)
        check_tensors(mv_direct,
                      mv_PMat_diag.get_flat_representation())

        # Test vTMv
        vTMv_direct = torch.dot(mv_direct, dw.get_flat_representation())
        vTMv_PMat_diag = PMat_diag.vTMv(dw)
        check_ratio(vTMv_direct, vTMv_PMat_diag)

        # Test inverse
        regul = 1e-3
        PMat_diag_inverse = PMat_diag.inverse(regul)
        prod = torch.mm(matrix_diag + regul * torch.eye(lc.numel(),
                                                        device=device),
                        PMat_diag_inverse.get_dense_tensor())
        check_tensors(torch.eye(lc.numel(), device=device),
                      prod)

        # Test solve
        regul = 1e-3
        Mv_regul = torch.mv(matrix_diag +
                            regul * torch.eye(PMat_diag.size(0),
                                              device=device),
                            dw.get_flat_representation())
        Mv_regul = PVector(layer_collection=lc,
                           vector_repr=Mv_regul)
        dw_using_inv = PMat_diag.solve(Mv_regul, regul=regul)
        check_tensors(dw.get_flat_representation(),
                      dw_using_inv.get_flat_representation(), eps=5e-3)

        # Test get_diag
        diag_direct = torch.diag(matrix_diag)
        diag_PMat_diag = PMat_diag.get_diag()
        check_tensors(diag_direct, diag_PMat_diag)

        # Test add, sub, rmul
        loader, lc, parameters, model, function, n_output = get_task()
        model.train()
        generator = Jacobian(layer_collection=lc,
                             model=model,
                             loader=loader,
                             function=function,
                             n_output=n_output)
        PMat_diag2 = PMatDiag(generator)

        check_tensors(PMat_diag.get_dense_tensor() +
                      PMat_diag2.get_dense_tensor(),
                      (PMat_diag + PMat_diag2).get_dense_tensor())
        check_tensors(PMat_diag.get_dense_tensor() -
                      PMat_diag2.get_dense_tensor(),
                      (PMat_diag - PMat_diag2).get_dense_tensor())
        check_tensors(1.23 * PMat_diag.get_dense_tensor(),
                      (1.23 * PMat_diag).get_dense_tensor())
Example #6
0
def test_jacobian_pdense():
    for get_task in nonlinear_tasks:
        for centering in [True, False]:
            loader, lc, parameters, model, function, n_output = get_task()
            model.train()
            generator = Jacobian(layer_collection=lc,
                                 model=model,
                                 loader=loader,
                                 function=function,
                                 n_output=n_output,
                                 centering=centering)
            PMat_dense = PMatDense(generator)
            dw = random_pvector(lc, device=device)

            # Test get_diag
            check_tensors(torch.diag(PMat_dense.get_dense_tensor()),
                          PMat_dense.get_diag())

            # Test frobenius
            frob_PMat = PMat_dense.frobenius_norm()
            frob_direct = (PMat_dense.get_dense_tensor()**2).sum()**.5
            check_ratio(frob_direct, frob_PMat)

            # Test trace
            trace_PMat = PMat_dense.trace()
            trace_direct = torch.trace(PMat_dense.get_dense_tensor())
            check_ratio(trace_PMat, trace_direct)

            # Test solve
            # NB: regul is high since the matrix is not full rank
            regul = 1e-3
            Mv_regul = torch.mv(PMat_dense.get_dense_tensor() +
                                regul * torch.eye(PMat_dense.size(0),
                                                  device=device),
                                dw.get_flat_representation())
            Mv_regul = PVector(layer_collection=lc,
                               vector_repr=Mv_regul)
            dw_using_inv = PMat_dense.solve(Mv_regul, regul=regul)
            check_tensors(dw.get_flat_representation(),
                          dw_using_inv.get_flat_representation(), eps=5e-3)

            # Test inv
            PMat_inv = PMat_dense.inverse(regul=regul)
            check_tensors(dw.get_flat_representation(),
                          PMat_inv.mv(PMat_dense.mv(dw) + regul * dw)
                          .get_flat_representation(), eps=5e-3)

            # Test add, sub, rmul
            loader, lc, parameters, model, function, n_output = get_task()
            model.train()
            generator = Jacobian(layer_collection=lc,
                                 model=model,
                                 loader=loader,
                                 function=function,
                                 n_output=n_output,
                                 centering=centering)
            PMat_dense2 = PMatDense(generator)

            check_tensors(PMat_dense.get_dense_tensor() +
                          PMat_dense2.get_dense_tensor(),
                          (PMat_dense + PMat_dense2).get_dense_tensor())
            check_tensors(PMat_dense.get_dense_tensor() -
                          PMat_dense2.get_dense_tensor(),
                          (PMat_dense - PMat_dense2).get_dense_tensor())
            check_tensors(1.23 * PMat_dense.get_dense_tensor(),
                          (1.23 * PMat_dense).get_dense_tensor())