Example #1
0
def asssistant():
    values = request.json
    data = {'n': len(values.values()[0]), 'k': len(values.keys())}

    # Paired?
    values_clean = clean_missing_values(request.json)
    data['paired'] = True if data['n'] == len(
        values_clean.values()[0]) else False

    # Normality?
    alpha = 0.1
    values_clean = clean_missing_values(request.json, delete_row=False)
    _, p_values = map(list,
                      zip(*[st.shapiro(v) for v in values_clean.values()]))
    data['normality'] = int(
        reduce(lambda x, y: x and y,
               [p_value < alpha for p_value in p_values]))

    # Homocedasticity?
    _, p_value = st.levene(*values_clean.values())
    data['homocedasticity'] = int(p_value < alpha)

    data.update(evaluate_test(data))

    return data
Example #2
0
def mannwhitneyu(alpha=0.05):
    values = clean_missing_values(request.json, delete_row=False)
    statistic, p_value = st.mannwhitneyu(values.values()[0],
                                         values.values()[1],
                                         use_continuity="false")
    result = int(p_value * 2 < alpha)
    return {"result": result, "statistic": statistic, "p_value": p_value * 2}
Example #3
0
def ttest_ind(alpha=0.05):
    values = clean_missing_values(request.json)
    statistic, p_value = st.ttest_ind(values.values()[0], values.values()[1])
    result = int(p_value < alpha)
    return {
        "statistic": statistic.tolist(),
        "p_value": p_value,
        "result": result
    }
Example #4
0
def quade(alpha=0.05, post_hoc="bonferroni_dunn_test", control=None):
    values = clean_missing_values(request.json)
    statistic, p_value, rankings, ranking_cmp = npt.quade_test(
        *values.values())
    rankings, names = map(
        list, zip(*sorted(zip(rankings, values.keys()), key=lambda t: t[0])))
    ranks = {key: ranking_cmp[i] for i, key in enumerate(values.keys())}
    if post_hoc.split('_')[-1] == "test":
        comparisons, z_values, _, adj_p_values = getattr(npt,
                                                         post_hoc)(ranks,
                                                                   control)
    else:
        comparisons, z_values, _, adj_p_values = getattr(npt, post_hoc)(ranks)
    return statistic, p_value, rankings, names, comparisons, z_values, adj_p_values
Example #5
0
def anova(alpha=0.05):
    values = clean_missing_values(request.json)
    statistic, p_value, pivots = pt.anova_within_test(*values.values())
    pivots_cmp = {key: pivots[i] for i, key in enumerate(values.keys())}
    comparisons, t_values, _, adj_p_values = pt.bonferroni_test(
        pivots_cmp, len(values.values()[0]))
    return {
        "anova": {
            "statistic": statistic,
            "p_value": p_value,
            "result": np.asscalar(p_value < alpha)
        },
        "post_hoc": {
            "comparisons": comparisons,
            "statistic": t_values,
            "p_value": adj_p_values,
            "result":
            [int(adj_p_value < alpha) for adj_p_value in adj_p_values]
        }
    }
Example #6
0
def wilcoxon(alpha=0.05):
    values = clean_missing_values(request.json)
    statistic, p_value = st.wilcoxon(values.values()[0], values.values()[1])
    result = int(p_value < alpha)
    return {"result": result, "statistic": statistic, "p_value": p_value}
Example #7
0
def binomialsign(alpha=0.05):
    values = clean_missing_values(request.json)
    statistic, p_value = npt.binomial_sign_test(values.values()[0],
                                                values.values()[1])
    result = int(p_value < alpha)
    return {"result": result, "statistic": statistic, "p_value": p_value}
Example #8
0
def levene(alpha=0.05):
    values = clean_missing_values(request.json, delete_row=False)
    statistic, p_value = st.levene(*values.values())
    result = int(p_value < alpha)
    return {"statistic": statistic, "p_value": p_value, "result": result}
Example #9
0
def agostino(alpha=0.05):
    values = clean_missing_values(request.json, delete_row=False)
    statistics, p_values = map(
        list, zip(*[st.normaltest(v) for v in values.values()]))
    result = [int(p_value < alpha) for p_value in p_values]
    return {"statistic": statistics, "p_value": p_values, "result": result}