def RGB_test(x_test,x_adv,y_test,classifier, pred_net):
    x_test, x_adv, y_test = get_testing_data(x_test, x_adv, y_test, classifier)
    x_adv_shape = x_adv.shape[0]

    outputs_adv = pred_net(x_adv)
    outputs = pred_net(x_test)

    adv_pre = outputs_adv[:, 1]
    x_pre = outputs[:, 1]

    outputs_adv = tf.argmax(outputs_adv, 1)
    outputs = tf.argmax(outputs, 1)

    adv_score = tf.reduce_sum(outputs_adv)
    x_score = tf.reduce_sum(outputs)
    print('total_number:', x_adv_shape)
    print('x_score:', x_score.numpy())
    print('x_adv_score:', x_adv_shape - adv_score.numpy())
    print('P:', x_score.numpy() / (x_score.numpy() + adv_score.numpy()))
    print('R:', x_score.numpy() / x_adv_shape)

    fpr, tpr, auc_score = compute_roc(adv_pre, x_pre)

    print('auc:', auc_score)

    concat = np.vstack((fpr, tpr))
    return concat
Example #2
0
    print("Total Model Runtime: {}min, {:0.2f}sec".format(
        int(time_elapsed // 60), time_elapsed % 60))

    probabilities = np.squeeze(np.array(probabilities))
    predictions = np.argmax(probabilities, axis=1)
    labels = np.argmax(test_target, axis=1)
    test_accuracy = np.sum(np.equal(predictions, labels)) / labels.size
    print("Final Accuracy: {:0.4f}".format(test_accuracy))

    # CNV      [1, 0, 0 ,0]
    # DRUSEN   [0, 1, 0 ,0]
    # DME      [0, 0, 1 ,0]
    # NORMAL   [0, 0, 0 ,1]

    LIST_OF_POS_IDX = [0]
    auc_0, se_0, sp_0, acc_0 = utils.compute_roc(probabilities, labels,
                                                 LIST_OF_POS_IDX)
    print(
        "POS_IDX:{}, Final Model AUC: {:0.4f}, SE: {:0.4f}, SP: {:0.4f}, ACC: {:0.4f}"
        .format(LIST_OF_POS_IDX, auc_0, se_0, sp_0, acc_0))

    LIST_OF_POS_IDX = [1]
    auc_1, se_1, sp_1, acc_1 = utils.compute_roc(probabilities, labels,
                                                 LIST_OF_POS_IDX)
    print(
        "POS_IDX:{}, Final Model AUC: {:0.4f}, SE: {:0.4f}, SP: {:0.4f}, ACC: {:0.4f}"
        .format(LIST_OF_POS_IDX, auc_1, se_1, sp_1, acc_1))

    LIST_OF_POS_IDX = [2]
    auc_2, se_2, sp_2, acc_2 = utils.compute_roc(probabilities, labels,
                                                 LIST_OF_POS_IDX)
    print(