def __init__(self,w=11,h=11): self.content = utils.create_array(w,h,0) self.sprite_content = utils.create_array(w,h, None) self.width = w self.height = h self.list_entities = [] self.list_entities.append(entities.living_entity(10, 10)) for x in range(w): for y in range(h): self.sprite_content[x][y] = res.create_sprite(res.tile_floor, x * 8, y * 8, group=res.group_floor)
def write_block_get_ber(self, block_idx): """Writes random data to all pages in specified block and then compares data written to data intended to be written.""" random_data = utils.create_array("random", self.PageSize, filename="random_input.bin") input_data = "".join(map(chr, random_data)) self.write_block(block_idx, input_data, per_page=True) self.read_block(block_idx, remove_oob=True, comparison_file="random_input.bin", compare_per_page=True) pages = [] ber = [] with open(self.IDString.rstrip() + "_BER.txt", "r") as error_data: plot = csv.reader(error_data, delimiter=",") for row in plot: pages.append(row[1]) ber.append(row[2]) pyplot.plot(pages, ber) pyplot.xlabel("Page") pyplot.ylabel("Block Error Rate") pyplot.title("BER per Page") pyplot.show()
def get_centrality(graph, method, topk=None): if method == "edge_betweeness_centrality": output = nx.edge_betweenness_centrality(graph) elif method == "betweenness_centrality": output = nx.betweenness_centrality(graph) elif method == "closeness_centrality": output = nx.closeness_centrality(graph) elif method == "eigenvector_centrality": output = nx.eigenvector_centrality(graph) elif method == "in_degree_centrality": output = nx.in_degree_centrality(graph) elif method == "out_degree_centrality": output = nx.out_degree_centrality(graph) elif method == "pagerank": output = pagerank(graph) else: return print(len(output)) output = np.array(create_array(output)) mean = round(np.mean(output), 4) if topk: arg_sorted_results = np.argsort(output)[::-1][:topk] else: arg_sorted_results = np.argsort(output)[::-1] return output, arg_sorted_results, mean
def testing(dataloader): # load device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") path = os.path.join(args.store_dir, 'model.pth.tar') model = EncoderDecoderConvLSTM(nf=args.n_hidden_dim, in_chan=1) model = nn.DataParallel(model) model.load_state_dict(torch.load(path)) model.to(device) # test criterion = nn.MSELoss() print(f'Started testing on {device}') with torch.no_grad(): for batch in dataloader: batch = batch.to(device) x, y = batch[:, 0:10, :, :, :], batch[:, 10:, :, :, :].squeeze() y_hat = model(x, future_seq=10).squeeze() testing_loss = criterion(y_hat, y) video_frames = create_array(y_hat, y) generate_video(video_array=video_frames, video_filename=args.store_dir + '/result.avi') break # only evaluate one batch return testing_loss.cpu()
dnn_features += ["m_ggj_", "m_jjj_"] if do_dnn: print("Calculating dnn scores") print((len(dnn_features))) print([feat for feat in dnn_features]) i = 0 print(dnn_features) for dnn_model in dnn_models: with open(dnn_model, "r") as f_in: model = json.load(f_in) dnn_features_data = dnn_helper.DNN_Features( name='data', global_features=utils.create_array(features_data, dnn_features, model["preprocess_scheme"], True), objects=utils.preprocess_array( utils.pad_array(features_data["objects_"]), model["preprocess_scheme"])) #print dnn_features_data.global_features #print dnn_features_data.objects #print dnn_features_data.features dnn_features_validation = dnn_helper.DNN_Features( name='validation', global_features=utils.create_array(features_validation, dnn_features, model["preprocess_scheme"], True), objects=utils.preprocess_array( utils.pad_array(features_validation["objects_"]),
with open(preprocess_scheme) as f_in: preprocess_scheme = json.load(f_in) print("Preprocessing scheme: ", preprocess_scheme) dnn_branches = [] if do_dnn: print("Calculating dnn scores") print((len(dnn_features))) print([feat for feat in dnn_features]) i = 0 for dnn_model in dnn_models: with open(dnn_model, "r") as f_in: model = json.load(f_in) dnn_features_data = dnn_helper.DNN_Features(name = 'data', global_features = utils.create_array(features_data, dnn_features, model["preprocess_scheme"], True), objects = utils.preprocess_array(utils.pad_array(features_data["objects_"]), model["preprocess_scheme"])) dnn_features_validation = dnn_helper.DNN_Features(name = 'test', global_features = utils.create_array(features_test, dnn_features, model["preprocess_scheme"], True), objects = utils.preprocess_array(utils.pad_array(features_test["objects_"]), model["preprocess_scheme"]), lumi = features_test["lumi_"], run = features_test["run_"], evt = features_test["evt_"]) dnn_features_train = dnn_helper.DNN_Features(name = 'train', global_features = utils.create_array(features_train, dnn_features, model["preprocess_scheme"], True), objects = utils.preprocess_array(utils.pad_array(features_train["objects_"]), model["preprocess_scheme"])) dnn = dnn_helper.DNN_Helper(features_validation = dnn_features_validation, features_train = dnn_features_train, features_data = dnn_features_data, metadata = model, weights_file = "dnn_weights/" + model["weights"], train_mode = False) dnn_predictions.append(dnn.predict(debug=True)) training_features.append("dnn_score_%d" % i) dnn_branches.append("dnn_score_%d" % i) i += 1 print(dnn_predictions) preprocess_dict = {} if args.z_score: for feat in training_features: mean, std = utils.get_mean_and_std(features_train[feat])
#if args.do_top_tag: # dnn_features += ["top_tag_score_"] if (args.fcnc_hut or args.fcnc_hct) and args.channel == "Hadronic" and not args.no_mass_constraint: dnn_features += ["m_ggj_", "m_jjj_"] if do_dnn: print("Calculating dnn scores") print((len(dnn_features))) print([feat for feat in dnn_features]) i = 0 print(dnn_features) for dnn_model in dnn_models: with open(dnn_model, "r") as f_in: model = json.load(f_in) dnn_features_data = dnn_helper.DNN_Features(name = 'data', global_features = utils.create_array(features_data, dnn_features, model["preprocess_scheme"], True), objects = utils.preprocess_array(utils.pad_array(features_data["objects_"]), model["preprocess_scheme"])) #print dnn_features_data.global_features #print dnn_features_data.objects #print dnn_features_data.features dnn_features_validation = dnn_helper.DNN_Features(name = 'validation', global_features = utils.create_array(features_validation, dnn_features, model["preprocess_scheme"], True), objects = utils.preprocess_array(utils.pad_array(features_validation["objects_"]), model["preprocess_scheme"])) dnn_features_final_fit = dnn_helper.DNN_Features(name = 'final_fit', global_features = utils.create_array(features_final_fit, dnn_features, model["preprocess_scheme"], True), objects = utils.preprocess_array(utils.pad_array(features_final_fit["objects_"]), model["preprocess_scheme"])) dnn_features_train = dnn_helper.DNN_Features(name = 'train', global_features = utils.create_array(features, dnn_features, model["preprocess_scheme"], True), objects = utils.preprocess_array(utils.pad_array(features["objects_"]), model["preprocess_scheme"])) dnn = dnn_helper.DNN_Helper(features_validation = dnn_features_validation, features_train = dnn_features_train, features_data = dnn_features_data, features_final_fit = dnn_features_final_fit, metadata = model, weights_file = "dnn_weights/" + model["weights"], train_mode = False) #dnn.predict() #dnn_predictions.append([dnn.predictions["train"], dnn.predictions["validation"], dnn.predictions["data"]]) dnn_predictions.append(dnn.predict(debug=True)) feature_names.append("dnn_score_%d" % i) i += 1 print(dnn_predictions)
feature_names.remove(name) print("Here are the ordered global features:", feature_names) if args.z_score: preprocess_dict = {} for feature in feature_names: if ("objects_" not in feature and "leptons_" != feature and "jets_" != feature): mean, stddev = utils.get_mean_and_std(features[feature]) preprocess_dict[feature] = { "mean": float(mean), "std_dev": float(stddev) } global_features = utils.create_array(features, feature_names, preprocess_dict, args.z_score) global_features_validation = utils.create_array(features_validation, feature_names, preprocess_dict, args.z_score) global_features_data = utils.create_array(features_data, feature_names, preprocess_dict, args.z_score) global_features_final_fit = utils.create_array(features_final_fit, feature_names, preprocess_dict, args.z_score) object_features = utils.pad_array(object_features) object_features_validation = utils.pad_array(object_features_validation) object_features_data = utils.pad_array(object_features_data) object_features_final_fit = utils.pad_array(object_features_final_fit) if args.z_score: