Example #1
0
def generate_appliances_traces(schema,
                               table,
                               appliances,
                               dataid,
                               sample_rate=None,
                               verbose=True):
    '''
    Return a list of appliance traces by dataid. Each trace is in decimal form
    and in average Watts.
    '''
    global schema_names, source
    schema_name = schema_names[schema]
    query = 'select {0},{1} from "{2}".{3} where dataid={4}'.format(
        ','.join(appliances), time_columns[schema], schema_name, table, dataid)
    if verbose:
        print query
    df = get_dataframe(query)
    df = df.rename(columns={time_columns[schema]: 'time'})
    utils.create_datetimeindex(df)
    traces = []
    for appliance in appliances:
        series = pd.Series(df[appliance], name=appliance).fillna(0)
        metadata = {
            'source': source,
            'schema': schema,
            'table': table,
            'dataid': dataid,
            'device_name': series.name,
        }
        trace = ApplianceTrace(series, metadata)
        if sample_rate:
            trace = trace.resample(sample_rate)
        traces.append(trace)
    return traces
def generate_appliances_traces(
        schema,table,appliances,dataid,sample_rate=None,verbose=True):
    '''
    Return a list of appliance traces by dataid. Each trace is in decimal form
    and in average Watts.
    '''
    global schema_names, source
    schema_name = schema_names[schema]
    query= 'select {0},{1} from "{2}".{3} where dataid={4}'.format(
        ','.join(appliances), time_columns[schema], schema_name, table, dataid)
    if verbose:
        print query
    df = get_dataframe(query)
    df = df.rename(columns={time_columns[schema]: 'time'})
    utils.create_datetimeindex(df)
    traces = []
    for appliance in appliances:
        series = pd.Series(df[appliance],name = appliance).fillna(0)
        metadata = {'source':source,
                    'schema':schema,
                    'table':table ,
                    'dataid':dataid,
                    'device_name':series.name,
                    }
        trace = ApplianceTrace(series,metadata)
        if sample_rate:
            trace = trace.resample(sample_rate)
        traces.append(trace)
    return traces
Example #3
0
def clean_dataframe(df, schema, drop_cols):
    '''
    Cleans a dataframe queried directly from the database by renaming the db
    time column (ex. UTC_15MIN) to a column name 'time'. It then converts the
    time column to datetime objects and reindexes the dataframe to the time
    column before dropping that column from the dataframe. It also drops any
    columns included in the list drop_cols. The columns 'id' and 'dataid' are
    also dropped.
    '''
    # change the time column name
    global time_columns
    df = df.rename(columns={time_columns[schema]: 'time'})

    # use a DatetimeIndex
    utils.create_datetimeindex(df)

    # drop unnecessary columns
    df = df.drop(['dataid'], axis=1)
    if schema == 'curated':
        df = df.drop(['id'], axis=1)
    if len(drop_cols) != 0:
        df = df.drop(drop_cols, axis=1)

    return df
def clean_dataframe(df,schema,drop_cols):
    '''
    Cleans a dataframe queried directly from the database by renaming the db
    time column (ex. UTC_15MIN) to a column name 'time'. It then converts the
    time column to datetime objects and reindexes the dataframe to the time
    column before dropping that column from the dataframe. It also drops any
    columns included in the list drop_cols. The columns 'id' and 'dataid' are
    also dropped.
    '''
    # change the time column name
    global time_columns
    df = df.rename(columns={time_columns[schema]: 'time'})

    # use a DatetimeIndex
    utils.create_datetimeindex(df)

    # drop unnecessary columns
    df = df.drop(['dataid'], axis=1)
    if schema == 'curated':
        df = df.drop(['id'], axis=1)
    if len(drop_cols)!=0:
        df= df.drop(drop_cols,axis=1)

    return df