Example #1
0
def create_models():
    models = []
    models.append(create_dense201())
    models.append(create_dense161())
    models.append(create_res101())
    models.append(create_res152())
    return models
Example #2
0
def train_res152():
    print('training resnet 152')
    model = create_res152()
    try:
        load_best_weights(model)
    except:
        print('Failed to load weigths')
    train(model, max_num=3)
Example #3
0
def ensemble():
    preds_raw = []
    os.chdir(MODEL_DIR)
    total_weight = 0
    preds_w = None
    for match_str in w_file_matcher:
        w_files = glob.glob(match_str)
        for w_file in w_files:
            weight = 0
            full_w_file = MODEL_DIR + '/' + w_file
            if w_file.startswith('dense161'):
                model, _ = create_dense161()
                weight = 1
            elif w_file.startswith('dense169'):
                model, _ = create_dense169()
                weight = 0.8
            elif w_file.startswith('dense201'):
                model, _ = create_dense201()
                weight = 1
            elif w_file.startswith('res50'):
                model, _ = create_res50()
                weight = 0.9
            elif w_file.startswith('res101'):
                model, _ = create_res101()
                weight = 0.9
            elif w_file.startswith('res152'):
                model, _ = create_res152()
                weight = 0.9
            elif w_file.startswith('vgg16'):
                model, _ = create_vgg16()
                weight = 0.2
            elif w_file.startswith('vgg19'):
                model, _ = create_vgg19()
                weight = 0.7
            elif w_file.startswith('inceptionv3'):
                model, _ = create_inceptionv3()
                weight = 0.8
            else:
                pass
            model.load_state_dict(torch.load(full_w_file))
            print(full_w_file)

            pred = make_preds(model, test_loader)
            pred = np.array(pred)
            preds_raw.append(pred)

            if preds_w is None:
                preds_w = np.zeros((pred.shape))
            preds_w += pred * weight
            total_weight += weight

            del model

    save_array(PRED_FILE_RAW, preds_raw)
    preds = np.mean(preds_raw, axis=0)
    #preds = preds_w / total_weight

    save_array(PRED_FILE, preds)
Example #4
0
def train_res152():
    print('training resnet 152')
    model, w_file = create_res152()
    try:
        model.load_state_dict(torch.load(w_file))
    except:
        print('{} not found, continue'.format(w_file))
        pass
    train(model, w_file, max_num=4)
Example #5
0
def ensemble():
    res101, _ = create_res101(True)
    res152, _ = create_res152(True)
    dense201, _ = create_dense201(True)
    dense161, _ = create_dense161(True)
    
    pred1 = np.array(make_preds(res101, test_loader))
    pred2 = np.array(make_preds(res152, test_loader))
    pred3 = np.array(make_preds(dense201, test_loader))
    pred4 = np.array(make_preds(dense161, test_loader))
    
    preds = np.mean([pred1, pred2, pred3, pred4], axis=0)
    save_array(PRED_FILE, preds)
    print(preds[:10])
Example #6
0
def find_weights():
    res101,_ = create_res101(True)
    res152,_ = create_res152(True)
    dense201,_ = create_dense201(True)
    dense161,_ = create_dense161(True)
    
    
    pred1, y1 = make_preds(res101, val_loader)
    #print(y1)
    #pred1 = np.random.random((600, 3))
    #print(pred1[:5])
    pred2, y2 = make_preds(res152, val_loader)
    #print(y2)
    pred3, y3 = make_preds(dense201, val_loader)
    pred4, y4 = make_preds(dense161, val_loader)

    #_, preds_test = torch.max(torch.from_numpy(pred4), 1)
    #print(preds_test[:10])
    print(pred1.shape)
    #y1 = np.array(do_clip(one_hot(y1), 0.9))
    print(y1[:5])
    print(pred1[:5])
    print(y1.shape, pred1.shape)
    #print(y1.shape)
    #print(log_loss(y1, y2))
    #print(log_loss(y3, y2))
    #print(log_loss(y3, y4))
    print(log_loss(y1, pred1))
    print(log_loss(y2, pred2))
    #print(log_loss(np.array(one_hot(y2), float32), pred2))
    #print(log_loss(np.array(one_hot(y3), float32), pred3))
    #print(log_loss(np.array(one_hot(y4), float32), pred4))
    
    y = []
    for data, labels in val_loader:
        for label in labels:
            y.append(label)
    print(np.array(y).shape)
    #print(y)

    return [pred1,pred2, pred3, pred4], y
Example #7
0
def ensemble():
    preds_raw = []
    os.chdir(MODEL_DIR)
    for match_str in w_file_matcher:
        w_files = glob.glob(match_str)
        for w_file in w_files:
            full_w_file = MODEL_DIR + '/' + w_file
            if w_file.startswith('dense161'):
                model, _ = create_dense161()
            elif w_file.startswith('dense169'):
                model, _ = create_dense169()
            elif w_file.startswith('dense201'):
                model, _ = create_dense201()
            elif w_file.startswith('res50'):
                model, _ = create_res50()
            elif w_file.startswith('res101'):
                model, _ = create_res101()
            elif w_file.startswith('res152'):
                model, _ = create_res152()
            elif w_file.startswith('vgg16'):
                model, _ = create_vgg16()
            elif w_file.startswith('vgg19'):
                model, _ = create_vgg19()
            elif w_file.startswith('inceptionv3'):
                model, _ = create_inceptionv3()
            else:
                pass
            model.load_state_dict(torch.load(full_w_file))
            print(full_w_file)

            pred = make_preds(model, test_loader)
            pred = np.array(pred)
            preds_raw.append(pred)

            del model

    save_array(PRED_FILE_RAW, preds_raw)
    preds = np.mean(preds_raw, axis=0)
    save_array(PRED_FILE, preds)
Example #8
0
def ensemble(stage):
    preds_weighted = None
    total_weight = 0
    preds_raw = []
    preds_raw_weighted = []

    for match_str in w_file_matcher:
        #print(match_str)
        os.chdir(MODEL_DIR)
        w_files = glob.glob(match_str)
        #print('cur:' + os.getcwd())
        for w_file in w_files:
            full_w_file = MODEL_DIR + '/' + w_file
            print(full_w_file)
            if w_file.startswith('dense161'):
                model = create_dense161()
            elif w_file.startswith('dense169'):
                model = create_dense169()
            elif w_file.startswith('dense201'):
                model = create_dense201()
            elif w_file.startswith('dense121'):
                model = create_dense121()
            elif w_file.startswith('res50'):
                model = create_res50()
            elif w_file.startswith('res101'):
                model = create_res101()
            elif w_file.startswith('res152'):
                model = create_res152()
            elif w_file.startswith('vgg16bn'):
                model = create_vgg16bn()
            elif w_file.startswith('vgg19bn'):
                model = create_vgg19bn()
            elif w_file.startswith('vgg19'):
                model = create_vgg19()
            elif w_file.startswith('inceptionv3'):
                model = create_inceptionv3()
            else:
                print('No model for {}'.format(full_w_file))
                continue
            model.load_state_dict(torch.load(full_w_file))

            pred, filenames = make_preds(model, stage)
            pred = np.array(pred)
            preds_raw.append(pred)
            weight = get_weight(get_acc_from_w_filename(full_w_file))
            preds_raw_weighted.append((pred, weight))

            if preds_weighted is None:
                preds_weighted = np.zeros(pred.shape)
            preds_weighted = preds_weighted + pred * weight
            total_weight += weight

            del model

    preds_weighted = preds_weighted / total_weight

    save_array(PRED_FILE_RAW, preds_raw)
    save_array(PRED_FILE_RAW_WEIGHTED, preds_raw_weighted)
    preds = np.mean(preds_raw, axis=0)
    save_array(PRED_FILE, preds)
    save_array(PRED_FILE_WEIGHTED, preds_weighted)
    save_array(TEST_FILE_NAMES, filenames)