ret, frame = cap.read()
    if ret:
        faces, landmarks = face_detector.detect(frame,
                                                0.8,
                                                scales=[1.0],
                                                do_flip=False)

        if len(faces) > 0:

            face_crops = []
            face_boxes = []
            for i in range(len(faces)):
                bbox = faces[i]
                bbox = (int(bbox[0]), int(bbox[1]), int(bbox[2]), int(bbox[3]))
                face_crop = utils.crop_face_loosely(
                    bbox, frame, (config["model"]["im_width"],
                                  config["model"]["im_height"]))
                face_crop = cv2.resize(face_crop,
                                       (config["model"]["im_width"],
                                        config["model"]["im_height"]))
                face_box, _, _ = utils.get_loosen_bbox(
                    bbox, frame, (config["model"]["im_width"],
                                  config["model"]["im_height"]))
                face_boxes.append(face_box)

                # Convert crop image to RGB color space
                face_crop = cv2.cvtColor(face_crop, cv2.COLOR_BGR2RGB)

                face_crops.append(face_crop)
                cv2.imshow("crop", face_crop)
Example #2
0
    print("Unable to connect to camera.")
    exit(-1)

detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(face_landmark_path)

frames = []
while cap.isOpened():
    ret, frame = cap.read()
    if ret:
        face_rects = detector(frame, 0)
        if len(face_rects) > 0:
            shape = predictor(frame, face_rects[0])
            shape = face_utils.shape_to_np(shape)

            face_crop = utils.crop_face_loosely(shape, frame, INPUT_SIZE)

            frames.append(face_crop)
            if len(frames) == 1:
                print(shape[30])
                pred_cont_yaw, pred_cont_pitch, pred_cont_roll = net.test_online(
                    frames)

                cv2_img = utils.draw_axis(frame,
                                          pred_cont_yaw,
                                          pred_cont_pitch,
                                          pred_cont_roll,
                                          tdx=shape[30][0],
                                          tdy=shape[30][1],
                                          size=100)
                cv2.imshow("cv2_img", cv2_img)
        landmark = re_label(draw.copy())

    # cv2.imshow("Label", draw)
    # cv2.waitKey(0)

    x_min = int(min(pt2d[0, :]))
    y_min = int(min(pt2d[1, :]))
    x_max = int(max(pt2d[0, :]))
    y_max = int(max(pt2d[1, :]))
    y_min = max(0, y_min - int(0.3 * (y_max - y_min)))  # Extend face to top

    # Crop face
    bbox = (x_min, y_min, x_max, y_max)
    bbox_loosen, scale_x, scale_y = utils.get_loosen_bbox(
        bbox, img, (args.input_size, args.input_size))
    crop = utils.crop_face_loosely(bbox, img,
                                   (args.input_size, args.input_size))
    example["face_bbox"] = bbox_loosen

    # Adjust landmark points
    example["landmark"] = []
    points = []
    for l in range(len(landmark)):

        # Normalize landmark points
        x = float(landmark[l]['x'] - bbox_loosen[0]) * scale_x
        y = float(landmark[l]['y'] - bbox_loosen[1]) * scale_y
        x, y = utils.normalize_landmark_point(
            (x, y), (args.input_size, args.input_size))

        example["landmark"].append([x, y])