Example #1
0
def match_2(parentdir, targetimg, templateimg, _type='demo', denoise=True):
    """
    :param parentdir: the directory to save the image
    :param targetimg: target -> bg image
    :param templateimg: template -> block
    :param _type: demo or login or register
    :param denoise: True or False
    :return: distance to the left of the north
    """

    target = cv2.imread(targetimg, 0)
    template = cv2.imread(templateimg, 0)
    # image_arr_rgb.shape
    # (H, W, C)
    w, h = template.shape[::-1]
    temp = parentdir + 'temp_gray_' + _type + '.png'
    targ = parentdir + 'targ_gray_' + _type + '.jpg'
    cv2.imwrite(temp, template)
    cv2.imwrite(targ, target)
    template = cv2.imread(temp)
    target = cv2.imread(targ)
    if denoise:
        import utils
        noisename = parentdir + 'temp_denoise_' + _type + '.png'
        utils.denoise(temp, 15, noisename)
        # noisename = cv1.mean_blur(noisename)
        template = cv2.imread(noisename)
    result = cv2.matchTemplate(target, template, cv2.TM_CCOEFF_NORMED)
    # result.shape形状的矩阵,第result.argmax()个元素的展开的坐标,第一个参数是一种整数数组,其元素是维度数组dims的扁平版本的索引。
    # 例子:
    # Consider a (6,7,8) shape array, what is the index (x,y,z) of the 100th element ?
    # >>> print np.unravel_index(100,(6,7,8))
    # (1, 5, 4)

    # 解释:
    # 给定一个矩阵,shape=(6,7,8),即3维的矩阵,求第n个元素的下标是什么?矩阵各维的下标从0开始
    # 如果indices参数是一个标量,那么返回的是一个向量,维数=矩阵的维数,向量的值其实就是在矩阵中对应的下标。如6*7*8*9的矩阵,
    # 1621/(7*8*9)=3,(1621-3*7*8*9)/(8*9)=1,(1621-3*7*8*9-1*8*9)/9=4,(1621-3*7*8*9-1*8*9-4*9)=1。
    # 所以返回的向量为array(3,1,4,1)

    # 如果indices参数是一个向量的,那么通过该向量中值求出对应的下标。下标的个数就是矩阵的维数,每一维下标组成一个向量,
    # 所以返回的向量的个数=矩阵维数。如7*6的矩阵,第22个元素是 3*6+4,所以对应的下标是(3,4),那么返回的值是 array([3]),array([4]
    # ---------------------
    # 原文:https://blog.csdn.net/dn_mug/article/details/70256109

    x, y = np.unravel_index(result.argmax(), result.shape)  # shape:(H,W)
    # 展示圈出来的区域
    cv2.rectangle(target, (y, x), (y + w, x + h), (7, 249, 151), 2)
    cv2.imshow('Show', target)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    return y
Example #2
0
def parse_document(struct_table, img):
    denoise_img = denoise(img)

    invoice_units = parse_invoice_units(struct_table, denoise_img)

    # total_n = len(y_coords)-1
    # total_amount_without_tax = get_cell_digits(5,total_n, table_coords, denoise_img)
    # total_amount_tax = get_cell_digits(8,total_n, table_coords, denoise_img)
    # total_amount_with_tax = get_cell_digits(9,total_n, table_coords, denoise_img)

    # print(total_amount_without_tax,total_amount_tax,total_amount_with_tax)

    x_table = min([x['cell'][0] for x in struct_table])
    y_table = min([x['cell'][1] for x in struct_table])

    invoice_data = None
    if y_table > 100:
        invoice_header_cell = denoise_img[0:y_table,
                                          x_table:denoise_img.shape[1] // 2]
        x, y, w, h = invoice_image_rect(invoice_header_cell)
        invoice_header_cell = denoise_img[y:y + h, x:x + w]
        if DEBUG:
            cv2_imshow(invoice_header_cell)

        try:
            invoice_data = get_invoice_data(invoice_header_cell)
        except Exception as E:
            logger.info('Не определен заголовок фактуры')
            logger.exception(E)
    else:
        logger.info('Не определен заголовок фактуры')

    return invoice_data, invoice_units
Example #3
0
def match_4_for_crawler(parentdir, targetimg, templateimg, _type, i, denoise=True):
    template = cv2.imread(templateimg, 0)
    target = cv2.imread(targetimg, 0)
    # 获取图像的长和宽
    w, h = template.shape[::-1]

    temp = parentdir + 'temp_gray_' + _type + '.png'
    targ = parentdir + 'targ_gray_' + _type + '.jpg'
    cv2.imwrite(temp, template)
    cv2.imwrite(targ, target)

    # template = abs(255 - template)
    # cv2.imwrite(temp, template)

    template = cv2.imread(temp)
    target = cv2.imread(targ)
    if denoise:
        import utils
        noisename = parentdir + 'temp_denoise_' + _type + '.png'
        # 15不错
        utils.denoise(temp, 13, noisename)
        # noisename = cv1.mean_blur(noisename)
        template = cv2.imread(noisename)

    # 模板匹配
    result = cv2.matchTemplate(target, template, cv2.TM_CCOEFF_NORMED)
    x, y = np.unravel_index(result.argmax(), result.shape)

    t = cv2.imread(targetimg, 1)
    # 展示圈出来的区域
    cv2.rectangle(t, (y, x), (y + w, x + h), (0, 0, 255), 2)
    font = cv2.FONT_HERSHEY_SIMPLEX  # 定义字体
    cv2.putText(t, 'notch 1.000', (y, x - 2), font, 0.4, (255, 0, 0), 1)
    # 图像,文字内容, 坐标 ,字体,大小,颜色,字体厚度
    # cv2.imshow('Show', t)
    cv2.imwrite(parentdir + 'mark/target' + i + _type + '.jpg', t)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    return y
Example #4
0
                        def wrapper(func, frame_no, partition_number, coords, img_frame, ret_list):
                            img_frame = utils.denoise(img_frame)
                            map_ret = func(coords, img_frame)

                            obj = {
                                'fno': frame_no,
                                'pno': partition_number,
                                'coords': coords,
                                'return': map_ret,
                                # 'd_frame': img_frame
                            }
                            print(map_ret)

                            ret_list.append(obj)
Example #5
0
        if ret_value == False:
            break

        # frame = imutils.resize(frame, width=700)
        clone = frame[:, :]
        # get the height and width of the frame
        (height, width) = frame.shape[:2]
        # convert the roi to grayscale and blur it
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        gray = cv2.GaussianBlur(gray, (7, 7), 0)
        thresh = cv2.erode(gray, None, iterations=2)
        thresh = cv2.dilate(thresh, None, iterations=4)

        # calibrating our running average until a threshold is reached
        denoised_clone = utils.denoise(clone)

        start_time = time()

        if num_frames < 6:
            running_avg(thresh, avg_wt)

        else:
            seg_img = segment(thresh)

            if seg_img is not None:
                # i.e. if segmented
                (thresholded, segmented) = seg_img
                # print("Center", center)
                if num_frames < 50:
                    selected_partitions = utils.segment_divider(thresholded)
Example #6
0
from PIL import Image
from pylab import *
import utils

im = array(Image.open('wisma-nusantara.jpg').convert('L'))
U, T = utils.denoise(im, im)

figure()
gray()
imshow(U)
axis('equal')
axis('off')
show()
Example #7
0
sr_gen = generator()
sr_gen.load_weights('weight/srgan/gan_generator.h5')
# Load model 2 -- Illumination improvement

mbllen_gen = Network.build_mbllen((32, 32, 3))
mbllen_gen.load_weights('weight/mbllen/LOL_img_lowlight.h5')

# Load test image
img = readImage(r'C:\Users\ywqqq\Documents\PRS_prj\maskdetection\test.jpg')

# If noise in image, denoise.
gaussian_noise = False
salt_and_pepper_noise = False

if gaussian_noise:
    img = denoise(img, 'gaussian')

if salt_and_pepper_noise:
    img = denoise(img, 'salt-and-pepper')

# Get the luminance of the image.
# If luminance < 70, then apply illumination improvemtn
imgHSV = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
H, S, V = cv2.split(imgHSV)
if V < 70:
    img = resolve_single(mbllen_gen, 'mbllen', img)

# Get the resolution of the image.
# If the resolution < 10000, then apply super resolution

r = img.shape[0] * img.shape[1]
    data = data.reshape(-1, 784)

    return data


def load_label(file_name):
    file_path = dataset_dir + '/' + file_name
    with gzip.open(file_path, 'rb') as f:
        labels = np.frombuffer(f.read(), np.uint8, offset=8)

    return labels


dataset = {}
dataset['train_img'] = load_img(key_file['train_img'])
dataset['train_label'] = load_label(key_file['train_label'])
dataset['test_img'] = load_img(key_file['test_img'])
dataset['test_label'] = load_label(key_file['test_label'])

import scipy.misc
import scipy as sp

for i in range(len(dataset['test_img'])):
    sp.misc.imsave('./datasets/mnist_test_image/test' + str(i) + '.jpg',
                   dataset['test_img'][i].reshape(28, 28))

testdatasets = glob.glob("./datasets/mnist_test_image/*")

for i in testdatasets:
    denoise(i)
Example #9
0
def match_3(parentdir, targetimg, templateimg, _type="demo", denoise=True):
    """
    :param parentdir:
    :param _type: demo or login or regist
    :param denoise: True or False
    :param targetimg: path of the bg image
    :param templateimg: path of the slide block
    :return: distance
    """
    # 参考https://blog.csdn.net/weixin_42081389/article/details/87935735
    # a=np.array([[2,3,4,5],[5,6,78,9],[1,3,4,5]])
    # print(a)
    # # 函数功能:假设有一个矩阵a,现在需要求这个矩阵的最小值,最大值,并得到最大值,最小值的索引,注意是先x后y,先列之间距离,再横向行距。
    # min_val,max_val,min_indx,max_indx=cv2.minMaxLoc(a)
    # print(min_val,max_val,min_indx,max_indx)

    img = cv2.imread(targetimg, 0)
    # img2 = img.copy()
    template = cv2.imread(templateimg, 0)
    temp = parentdir + 'temp_gray_' + _type + '.png'
    targ = parentdir + 'targ_gray_' + _type + '.jpg'
    cv2.imwrite(targ, img)
    # cv2.imshow('messi', img)
    # cv2.imshow('face', template)
    # cv2.waitKey(0)
    # cv2.destroyAllWindows()
    # 也可以写作: h, w = template.shape[:2],因为shape是(H,W,C)
    w, h = template.shape[::-1]
    # All the 6 methods for comparison in a list
    # methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR',
    #            'cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']

    # 这个要不要翻转颜色很关键,试试就知道
    # template = abs(255 - template)

    meth = 'cv2.TM_CCOEFF_NORMED'
    # img = img2.copy()
    '''
    exec可以用来执行储存在字符串文件中的python语句
    例如可以在运行时生成一个包含python代码的字符串
    然后使用exec语句执行这些语句
    eval语句用来计算存储在字符串中的有效python表达式
    '''
    cv2.imwrite(temp, template)
    target = cv2.imread(targ)
    template = cv2.imread(temp)
    method = eval(meth)
    if denoise:
        import utils
        noisename = parentdir + 'temp_denoise_' + _type + '.png'
        utils.denoise(temp, 15, noisename)
        # noisename = cv1.mean_blur(noisename)
        template = cv2.imread(noisename)
    # 匹配应用
    res = cv2.matchTemplate(target, template, method)
    # print(res)
    # print(np.array(res))
    # print("res.shape: ", res.shape)
    min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

    # 使用不同的方法,对结果的解释不同
    # 方法判断
    # if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:
    #     top_left = min_loc
    # else:
    #     top_left = max_loc

    # 最大值的坐标就是距离左边界和上边界的距离
    top_left = max_loc
    # print('偏移像素', top_left[0])

    bottom_right = (top_left[0] + w, top_left[1] + h)
    cv2.rectangle(img, top_left, bottom_right, 255, 2)
    cv2.imshow('Show', img)
    plt.subplot(121), plt.imshow(res, cmap='gray')
    plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
    plt.subplot(122), plt.imshow(img, cmap='gray')
    plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
    plt.suptitle('method: ' + meth)
    plt.savefig(parentdir + 'mark3/target_res.jpg')
    plt.show()
    # cv2.imwrite(parentdir + 'mark3/target' + i + _type + '.jpg', img)
    cv2.imwrite(parentdir + 'mark3/target' + _type + '.jpg', img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
    return top_left[0]