Example #1
0
    def __init__(self, hidden_size, batch_size, learning_rate):
        self.input_tensor = tf.placeholder(tf.float32, [None, 28 * 28])
        self.is_training = tf.placeholder_with_default(True, [])

        with arg_scope([layers.conv2d, layers.conv2d_transpose],
                       activation_fn=concat_elu,
                       normalizer_fn=layers.batch_norm,
                       normalizer_params={
                           'scale': True,
                           'is_training': self.is_training
                       }):
            with tf.variable_scope("model"):
                D1 = discriminator(self.input_tensor)  # positive examples
                D_params_num = len(tf.trainable_variables())
                G = decoder(tf.random_normal([batch_size, hidden_size]))
                self.sampled_tensor = G

            with tf.variable_scope("model", reuse=True):
                D2 = discriminator(G)  # generated examples

        D_loss = self.__get_discrinator_loss(D1, D2)
        G_loss = self.__get_generator_loss(D2)

        params = tf.trainable_variables()
        D_params = params[:D_params_num]
        G_params = params[D_params_num:]
        update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
        g_update_ops = [
            op for op in update_ops if op.name.startswith('model_1/')
        ]
        d_update_ops = [op for op in update_ops if op not in g_update_ops]
        #    train_discrimator = optimizer.minimize(loss=D_loss, var_list=D_params)
        # train_generator = optimizer.minimize(loss=G_loss, var_list=G_params)
        global_step = tf.contrib.framework.get_or_create_global_step()
        with tf.control_dependencies(d_update_ops):
            self.train_discrimator = layers.optimize_loss(D_loss,
                                                          global_step,
                                                          learning_rate / 10,
                                                          'Adam',
                                                          variables=D_params,
                                                          update_ops=[])
        with tf.control_dependencies(g_update_ops):
            self.train_generator = layers.optimize_loss(G_loss,
                                                        global_step,
                                                        learning_rate,
                                                        'Adam',
                                                        variables=G_params,
                                                        update_ops=[])

        self.sess = tf.Session()
        self.sess.run(tf.global_variables_initializer())
Example #2
0
def train_step(video_real, video_wrong, text):
    num_clips, t, h, w, c = video_real.shape
    word, sentence = bert([text])
    word, sentence = tf.convert_to_tensor(word), tf.convert_to_tensor(sentence)
    word = tf.squeeze(word)
    z = tf.random.normal(shape=(1, 100))

    with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
        video_fake = generator(video_real, word, z)

        # All frames put together with bs = 1
        video_real = tf.reshape(video_real, (1, num_clips * t, h, w, c))
        video_wrong = tf.reshape(video_wrong, (1, num_clips * t, h, w, c))
        video_fake = tf.reshape(video_fake, (1, num_clips * t, h, w, c))

        # Discriminator out
        disc_video_real, disc_frame_real, disc_motion_real = discriminator(
            video_real, sentence)
        disc_video_wrong, disc_frame_wrong, disc_motion_wrong = discriminator(
            video_wrong, sentence)
        disc_video_fake, disc_frame_fake, disc_motion_fake = discriminator(
            video_fake, sentence)

        # Losses
        total_video_loss = video_loss(disc_video_real, disc_video_wrong,
                                      disc_video_fake)
        total_frame_loss = frame_loss(disc_frame_real, disc_frame_wrong,
                                      disc_frame_fake)
        total_motion_loss = motion_loss(disc_motion_real, disc_motion_wrong,
                                        disc_motion_fake)

        disc_loss = discriminator_loss(total_video_loss, total_frame_loss,
                                       total_motion_loss)
        gen_loss = generator_loss(disc_video_fake, disc_frame_fake,
                                  disc_motion_fake)

    gradients_of_generator = gen_tape.gradient(gen_loss,
                                               generator.trainable_variables)
    gradients_of_discriminator = disc_tape.gradient(
        disc_loss, discriminator.trainable_variables)

    generator_optimizer.apply_gradients(
        zip(gradients_of_generator, generator.trainable_variables))
    discriminator_optimizer.apply_gradients(
        zip(gradients_of_discriminator, discriminator.trainable_variables))
    def __init__(self, hidden_size, batch_size, learning_rate, generate_size):
        self.input_tensor = tf.placeholder(tf.float32, [None, 28 * 28])

        with arg_scope([layers.conv2d, layers.conv2d_transpose],
                       activation_fn=concat_elu,
                       normalizer_fn=layers.batch_norm,
                       normalizer_params={'scale': True}):
            with tf.variable_scope("model"):
                D1 = discriminator(self.input_tensor)  # positive examples
                D_params_num = len(tf.trainable_variables())
                G = decoder(tf.random_normal([batch_size, hidden_size]))
                self.sampled_tensor = G

            with tf.variable_scope("model", reuse=True):
                D2 = discriminator(G)  # generated examples

            with tf.variable_scope("model", reuse=True):
                self.sampled_tensor_gener = decoder(
                    tf.random_normal([generate_size, hidden_size]))

        D_loss = self.__get_discrinator_loss(D1, D2)
        G_loss = self.__get_generator_loss(D2)

        params = tf.trainable_variables()
        D_params = params[:D_params_num]
        G_params = params[D_params_num:]
        #    train_discrimator = optimizer.minimize(loss=D_loss, var_list=D_params)
        # train_generator = optimizer.minimize(loss=G_loss, var_list=G_params)
        global_step = tf.contrib.framework.get_or_create_global_step()
        self.train_discrimator = layers.optimize_loss(D_loss,
                                                      global_step,
                                                      learning_rate / 10,
                                                      'Adam',
                                                      variables=D_params,
                                                      update_ops=[])
        self.train_generator = layers.optimize_loss(G_loss,
                                                    global_step,
                                                    learning_rate,
                                                    'Adam',
                                                    variables=G_params,
                                                    update_ops=[])

        self.sess = tf.Session()
        self.sess.run(tf.global_variables_initializer())
Example #4
0
File: train.py Project: SodaLee/GAN
def gans(ginputs, dinputs, choice, freeze_D):
	gout = generator(ginputs).get_G()
	gout = tf.cond(
		freeze_D,
		lambda: gout,
		lambda: tf.stop_gradient(gout))
	din = tf.cond(
		choice,
		lambda: tf.concat([gout, ginputs], axis = -1),
		lambda: tf.concat([dinputs, ginputs], axis = -1)
	)
	dout = discriminator(din, freeze_D).get_D()
	return gout, dout
    def define_network(self):

        # Generators
        # This one is used to generate fake data
        self.gen_b_fake = generator(self.X_shoes,
                                    self.initializer,
                                    scope_name="generator_sb")
        self.gen_s_fake = generator(self.X_bags,
                                    self.initializer,
                                    scope_name="generator_bs")

        # Reconstruction Generators
        # Note that parameters are being used from previous layers
        self.gen_recon_s = generator(self.gen_b_fake,
                                     self.initializer,
                                     scope_name="generator_sb",
                                     reuse=True)
        self.gen_recon_b = generator(self.gen_s_fake,
                                     self.initializer,
                                     scope_name="generator_bs",
                                     reuse=True)

        # Discriminator for Shoes
        self.disc_s_real = discriminator(self.X_shoes,
                                         self.initializer,
                                         scope_name="discriminator_s")
        self.disc_s_fake = discriminator(self.gen_s_fake,
                                         self.initializer,
                                         scope_name="discriminator_s",
                                         reuse=True)

        # Discriminator for Bags
        self.disc_b_real = discriminator(self.X_bags,
                                         self.initializer,
                                         scope_name="discriminator_b")
        self.disc_b_fake = discriminator(self.gen_b_fake,
                                         self.initializer,
                                         reuse=True,
                                         scope_name="discriminator_b")
Example #6
0
    def build_model(self):
        noise_dim = self.config.noise_dim
        image_dim = self.config.image_dim
        learning_rate = self.config.learning_rate
        #create placeholders
        self.gen_input = tf.placeholder(tf.float32, shape=[None, noise_dim], name="input_noise")
        self.disc_input = tf.placeholder(tf.float32, shape=[None, image_dim], name="disc_input")

        self.parameters = give_me_parameters(self.config)
        #build generator network
        with tf.name_scope('generator') as scope:
            self.gen_sample = generator(self.gen_input, self.parameters)
        with tf.name_scope('discriminator') as scope:
            disc_real           = discriminator(self.disc_input, self.parameters)
            disc_fake           = discriminator(self.gen_sample, self.parameters)

        with tf.name_scope('loss') as scope:
            #make losses
            self.gen_loss = -tf.reduce_mean(tf.log(disc_fake))
            self.disc_loss = -tf.reduce_mean(tf.log(disc_real) + tf.log(1. - disc_fake))

        with tf.name_scope('summaries') as scope:
            gen_images = tf.reshape(self.gen_sample, [-1, 28, 28, 1])
            tf.summary.scalar('Generative Loss', self.gen_loss)
            tf.summary.scalar('Discriminator Loss', self.disc_loss)
            #tf.summary.image("Generated image", gen_images)
            tf.summary.image("Generated image", gen_images, 100, family='generated_images')
            self.merged_summary = tf.summary.merge_all()
        with tf.name_scope('optimizers') as scope:
            #create Optimizers
            optimizer_gen  = tf.train.AdamOptimizer(learning_rate=learning_rate)
            optimizer_disc = tf.train.AdamOptimizer(learning_rate=learning_rate)
            gen_vars  = give_gen_vars(self.parameters)
            disc_vars = give_disc_vars(self.parameters)
            self.train_gen = optimizer_gen.minimize(self.gen_loss, var_list=gen_vars)
            self.train_disc = optimizer_disc.minimize(self.disc_loss, var_list=disc_vars)
Example #7
0
import tensorflow as tf
import os
import utils

batch_size = 100
iterations = 10000
im_size = 64
layer = 3 
z_size = 100
z_in = tf.placeholder(shape=[batch_size,z_size], dtype=tf.float32)
real_in = tf.placeholder(shape=[batch_size,im_size,im_size,layers], 

g = utils.generator(z_in,im_size, layers,batch_size)
d = utils.discriminator(real_in,batch_size

d_fake = utils.discriminator(g, batch_size, reuse=True)

d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(d, tf.ones_like(d)))

d_loss = d_loss_fake 
	def __init__(self,batch_size=10,im_size=64,channels=3,dtype=tf.float32,analytics=True):
		self.analytics = analytics
		self.batch_size = batch_size

		self.x_a = tf.placeholder(dtype,[None,im_size,im_size,channels],name='xa')
		self.x_b = tf.placeholder(dtype,[None,im_size,im_size,channels],name='xb')

		#Generator Networks
		self.g_ab = utils.generator(self.x_a,name="gen_AB",im_size=im_size)
		self.g_ba = utils.generator(self.x_b,name="gen_BA",im_size=im_size)

		#Secondary generator networks, reusing params of previous two
		self.g_aba = utils.generator(self.g_ab,name="gen_BA",im_size=im_size,reuse=True)
		self.g_bab = utils.generator(self.g_ba,name="gen_AB",im_size=im_size,reuse=True)

		#Discriminator for input a
		self.disc_a_real = utils.discriminator(self.x_a,name="disc_a",im_size=im_size)
		self.disc_a_fake = utils.discriminator(self.g_ba,name="disc_a",im_size=im_size,reuse=True)

		#Discriminator for input b
		self.disc_b_real = utils.discriminator(self.x_b,name="disc_b")
		self.disc_b_fake = utils.discriminator(self.g_ab,name="disc_b",reuse=True)

		#Reconstruction loss for generators
		self.l_const_a = tf.reduce_mean(utils.huber_loss(self.g_aba,self.x_a))
		self.l_const_b = tf.reduce_mean(utils.huber_loss(self.g_bab,self.x_b))

		#Generation loss for generators 
		self.l_gan_a = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.disc_a_fake,labels=tf.ones_like(self.disc_a_fake)))
		self.l_gan_b = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.disc_b_fake,labels=tf.ones_like(self.disc_b_fake)))

		#Real example loss for discriminators
		self.l_disc_a_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.disc_a_real,labels=tf.ones_like(self.disc_a_real)))
		self.l_disc_b_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.disc_b_real,labels=tf.ones_like(self.disc_b_real)))

		#Fake example loss for discriminators
		self.l_disc_a_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.disc_a_fake,labels=tf.zeros_like(self.disc_a_fake)))
		self.l_disc_b_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.disc_b_fake,labels=tf.zeros_like(self.disc_b_fake)))

		#Combined loss for individual discriminators
		self.l_disc_a = self.l_disc_a_real + self.l_disc_a_fake
		self.l_disc_b = self.l_disc_b_real + self.l_disc_b_fake

		#Total discriminator loss
		self.l_disc = self.l_disc_a + self.l_disc_b

		#Combined loss for individual generators
		self.l_ga = self.l_gan_a + self.l_const_b
		self.l_gb = self.l_gan_b + self.l_const_a

		#Total GAN loss
		self.l_g = self.l_ga + self.l_gb

		#Parameter Lists
		self.disc_params = []
		self.gen_params = []

		for v in tf.trainable_variables():
			if 'disc' in v.name:
				self.disc_params.append(v)
			if 'gen' in v.name:
				self.gen_params.append(v)

		if self.analytics:
			self.init_analytics()

		self.gen_a_dir = 'generator a->b'
		self.gen_b_dir = 'generator b->a'
		self.rec_a_dir = 'reconstruct a'
		self.rec_b_dir = 'reconstruct b'
		self.model_directory = "models"	
	
		if not os.path.exists(self.gen_a_dir):
			os.makedirs(self.gen_a_dir)
		if not os.path.exists(self.gen_b_dir):
			os.makedirs(self.gen_b_dir)
		if not os.path.exists(self.rec_b_dir):
			os.makedirs(self.rec_b_dir)
		if not os.path.exists(self.rec_a_dir):
			os.makedirs(self.rec_a_dir)	

		self.sess = tf.Session()
		self.saver = tf.train.Saver()
Example #9
0
import tensorflow as tf
import os
import utils
tf.reset_default_graph()
batch_size = 1
iterations = 100000
sample_directory = './figs'
model_directory = './models'
im_size = 64
layers = 3
z_size = 100
z_in = tf.placeholder(shape=[batch_size, z_size], dtype=tf.float32)
real_in = tf.placeholder(shape=[batch_size, im_size, im_size, layers],
                         dtype=tf.float32)
g = utils.generator(z_in, im_size, layers, batch_size)
d = utils.discriminator(real_in, batch_size)
d2 = utils.discriminator(g, batch_size, reuse=True)

d_loss_real = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(logits=d, labels=tf.ones_like(d)))
d_loss_fake = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(logits=d2,
                                            labels=tf.zeros_like(d2)))
d_loss = d_loss_real + d_loss_fake
g_loss = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(logits=d2,
                                            labels=tf.ones_like(d2)))
tvars = tf.trainable_variables()
g_params = []
d_params = []
for var in tvars:
Example #10
0
domainB = "EDGES"

#Input placeholders
x_a = tf.placeholder(tf.float32,shape=[BATCH_SIZE,64,64,3],name="xa")
x_b = tf.placeholder(tf.float32,shape=[BATCH_SIZE,64,64,3],name="xb")

#Generator Networks
g_ab = utils.generator(x_a,BATCH_SIZE,name="gen_AB")
g_ba = utils.generator(x_b,BATCH_SIZE,name="gen_BA")

#Secondary generator networks, reusing params of previous two
g_aba = utils.generator(g_ab,BATCH_SIZE,name="gen_BA",reuse=True)
g_bab = utils.generator(g_ba,BATCH_SIZE,name="gen_AB",reuse=True)

#Discriminator for input a
disc_a_real = utils.discriminator(x_a,name="disc_a")
disc_a_fake = utils.discriminator(g_ba,name="disc_a",reuse=True)

#Discriminator for input b
disc_b_real = utils.discriminator(x_b,name="disc_b")
disc_b_fake = utils.discriminator(g_ab,name="disc_b",reuse=True)

#Reconstruction loss for generators
l_const_a = tf.reduce_mean(utils.huber_loss(g_aba,x_a))
l_const_b = tf.reduce_mean(utils.huber_loss(g_bab,x_b))

#Generation loss for generators 
l_gan_a = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=disc_a_fake,labels=tf.ones_like(disc_a_fake)))
l_gan_b = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=disc_b_fake,labels=tf.ones_like(disc_b_fake)))

#Real example loss for discriminators
x = (x - 0.5) / 0.5
n = len(x)

nz = params.nz
ngf = params.uncon_ngf
ndf = params.uncon_ndf
assert (
    params.uncon_shape[0] == params.uncon_shape[1]), "Images must be square!"
sz = params.uncon_shape[0]
nc = params.uncon_shape[2]
batchSize = params.uncon_batch_size
lr = params.uncon_lr
niter = params.uncon_niter

netG = utils.generator(sz, nz, ngf, nc)
netD = utils.discriminator(sz, nz, ndf, nc)

criterion = nn.BCELoss()

input = torch.FloatTensor(batchSize, nc, sz, sz)
noise = torch.FloatTensor(batchSize, nz, 1, 1)
fixed_noise = torch.FloatTensor(batchSize, nz, 1, 1).normal_(0, 1)
label = torch.FloatTensor(batchSize)
real_label = 1
fake_label = 0

netD.cuda()
netG.cuda()
criterion.cuda()
input, label = input.cuda(), label.cuda()
noise, fixed_noise = noise.cuda(), fixed_noise.cuda()
Example #12
0
NOISE_DIM = 100
batch_size = 128

mnist = datasets.MNIST('./MNIST_data',
                       train=True,
                       download=True,
                       transform=transforms.ToTensor())
loader_train = DataLoader(mnist, batch_size=batch_size, drop_last=True)

imgs = loader_train.__iter__().next()[0].view(batch_size,
                                              784).numpy().squeeze()
show_images(imgs)

#Training original GAN
D = discriminator().to(device)
G = generator().to(device)

D_optimizer = torch.optim.Adam(D.parameters(), lr=1e-3, betas=(0.5, 0.999))
G_optimizer = torch.optim.Adam(G.parameters(), lr=1e-3, betas=(0.5, 0.999))

train(D,
      G,
      D_optimizer,
      G_optimizer,
      discriminator_loss,
      generator_loss,
      train_loader=loader_train,
      num_epochs=10,
      device=device)
Example #13
0
    def __init__(self,
                 hidden_size,
                 batch_size,
                 learning_rate,
                 alpha,
                 beta,
                 gamma,
                 sum_dir,
                 attri_num,
                 add_gan=1,
                 GAN_model="V",
                 similarity_layer=4):

        print("\nInitializing model with following parameters:")
        print("batch_size:", batch_size, " learning_rate:", learning_rate,
              " alpha:", alpha, " beta:", beta, " gamma:", gamma)
        print("GAN_model:", GAN_model, " similarity_layer:", similarity_layer,
              "\n")

        self.input_tensor = tf.placeholder(tf.float32, [batch_size, 64, 64, 3])
        #self.input_label  = tf.placeholder(tf.int, [batch_size, attri_num])
        self.visual_attri = tf.placeholder(tf.float32, [hidden_size])

        with arg_scope([layers.conv2d, layers.conv2d_transpose],
                       activation_fn=tf.nn.relu,
                       normalizer_fn=layers.batch_norm,
                       normalizer_params={'scale': True},
                       padding='SAME'):
            with tf.variable_scope("model") as scope:  #Full VAEGAN structure
                # Encoder
                ENC = encoder(self.input_tensor, hidden_size * 2)
                Enc_params_num = len(tf.trainable_variables())

                # Add noise
                self.mean, stddev = tf.split(1, 2, ENC)
                stddev = tf.sqrt(tf.exp(stddev))
                epsilon = tf.random_normal(
                    [tf.shape(self.mean)[0], hidden_size])
                ENC_w_noise = self.mean + epsilon * stddev

                # Decoder / Generator
                self.DEC_of_ENC = decoder(ENC_w_noise)
                Enc_n_Dec_params_num = len(tf.trainable_variables())

                # Discriminator
                if add_gan == 1:
                    DIS_of_DEC_of_ENC = discriminator(self.DEC_of_ENC,
                                                      GAN_model)
                    Gen_dis_sum = tf.scalar_summary(
                        'Gen_dis_mean', tf.reduce_mean(DIS_of_DEC_of_ENC))

            with tf.variable_scope(
                    "model", reuse=True) as scope:  #Computation for Recon_Loss
                if add_gan == 1:
                    Real_Similarity = discriminator(self.input_tensor,
                                                    GAN_model,
                                                    extract=similarity_layer)
                    Gen_Similarity = discriminator(
                        self.DEC_of_ENC, GAN_model, extract=similarity_layer
                    )  #+ tf.random_normal([batch_size, 8, 8, 256])

            with tf.variable_scope(
                    "model", reuse=True) as scope:  #Computation for GAN_Loss
                if add_gan == 1:
                    Real_in_Dis = discriminator(self.input_tensor, GAN_model)
                    Real_dis_sum = tf.scalar_summary(
                        'Real_dis_mean', tf.reduce_mean(Real_in_Dis))
                    Prior_in_Dis = discriminator(
                        decoder(tf.random_normal([batch_size, hidden_size])),
                        GAN_model)
                    Prior_dis_sum = tf.scalar_summary(
                        'Prior_dis_mean', tf.reduce_mean(Prior_in_Dis))

            with tf.variable_scope(
                    "model", reuse=True) as scope:  #Sample from latent space
                self.sampled_tensor = decoder(
                    tf.random_normal([batch_size, hidden_size]))

            with tf.variable_scope(
                    "model", reuse=True) as scope:  #Add visual attributes
                #expand_mean = tf.expand_dims(self.mean, -1)
                print("shape of mean:", np.shape(self.mean),
                      " shape of visual attri:", np.shape(self.visual_attri))
                add_attri = self.mean + np.ones(
                    [batch_size, 1]
                ) * self.visual_attri  #[batch size, hidden size] (broadcasting)
                print("shape of add attri:", tf.shape(add_attri))
                self.with_attri_tensor = decoder(add_attri)

        self.params = tf.trainable_variables()
        self.Enc_params = self.params[:Enc_params_num]
        '''
        print ('Encoder Param:')
        for var in Enc_params:
            print (var.name)
        '''
        self.Dec_params = self.params[Enc_params_num:Enc_n_Dec_params_num]
        '''
        print ('Decoder Param:')
        for var in Dec_params:
            print (var.name)
        '''
        if add_gan == 1:
            self.Dis_params = self.params[Enc_n_Dec_params_num:]
        '''
        print ('Discriminator Param:')
        for var in Dis_params:
            print (var.name)
        '''
        self.Prior_loss = self.__get_prior_loss(self.mean, stddev)
        Prior_loss_sum = tf.scalar_summary('Prior_loss', self.Prior_loss)
        if add_gan == 1:
            self.Recon_loss = self.__get_reconstruction_loss(
                Gen_Similarity, Real_Similarity)
            Recon_loss_sum = tf.scalar_summary('Recon_loss', self.Recon_loss)
            self.GAN_loss = self.__get_GAN_loss(Real_in_Dis, Prior_in_Dis,
                                                DIS_of_DEC_of_ENC, GAN_model)
            GAN_loss_sum = tf.scalar_summary('GAN_loss', self.GAN_loss)
        else:
            self.Recon_loss = self.__get_reconstruction_loss(
                self.DEC_of_ENC, self.input_tensor)
            Recon_loss_sum = tf.scalar_summary('Recon_loss', self.Recon_loss)

        # merge  summary for Tensorboard
        if add_gan == 1:
            self.detached_loss_summary_merged = tf.merge_summary([
                Prior_loss_sum, Recon_loss_sum, GAN_loss_sum, Real_dis_sum,
                Prior_dis_sum, Gen_dis_sum
            ])
            #self.dis_mean_value_summary_merged         =  tf.merge_summary([Real_dis_sum,Prior_dis_sum,Gen_dis_sum])
        else:
            self.detached_loss_summary_merged = tf.merge_summary(
                [Prior_loss_sum, Recon_loss_sum])

        if add_gan == 1:
            enc_loss = self.Prior_loss + beta * self.Recon_loss
            dec_loss = gamma * self.Recon_loss + self.GAN_loss
            dis_loss = (-1) * self.GAN_loss
        else:
            total_loss = self.Prior_loss + beta * self.Recon_loss

        #self.combined_loss_summary_merged          =  tf.merge_summary([self.prior_loss_sum,self.recon_loss_sum,self.GAN_loss_sum])
        if add_gan == 1:
            self.train_enc = layers.optimize_loss(enc_loss, tf.contrib.framework.get_or_create_global_step(\
                ), learning_rate=learning_rate, variables = self.Enc_params, optimizer='RMSProp', update_ops=[])

            self.train_dec = layers.optimize_loss(dec_loss, tf.contrib.framework.get_or_create_global_step(\
                ), learning_rate=learning_rate, variables = self.Dec_params, optimizer='RMSProp', update_ops=[])

            self.train_dis = layers.optimize_loss(dis_loss, tf.contrib.framework.get_or_create_global_step(\
                ), learning_rate=learning_rate * alpha, variables = self.Dis_params, optimizer='RMSProp', update_ops=[])
        else:
            self.train     = layers.optimize_loss(total_loss, tf.contrib.framework.get_or_create_global_step(\
                ), learning_rate=learning_rate, variables = self.params, optimizer='RMSProp', update_ops=[])

        config = tf.ConfigProto()
        config.gpu_options.allow_growth = True
        self.sess = tf.Session(config=config)
        self.sess.run(tf.initialize_all_variables())

        self.train_writer = tf.train.SummaryWriter(sum_dir + '/train',
                                                   self.sess.graph)
Example #14
0
    def __init__(self, hidden_size, batch_size, learning_rate):
        self.input_tensor = tf.placeholder(tf.float32, [None, 28 * 28])
        self.xs2 = tf.placeholder(tf.float32, [None, 28 * 28])
        self.dis = tf.placeholder(tf.float32, [1, None])
        self.flag = tf.placeholder(tf.float32, [1, None])

        with arg_scope([layers.conv2d, layers.conv2d_transpose],
                       activation_fn=concat_elu,
                       normalizer_fn=layers.batch_norm,
                       normalizer_params={'scale': True}):
            with tf.variable_scope("model"):
                D1 = discriminator(self.input_tensor)  # positive examples
                D_params_num = len(tf.trainable_variables())
                encoded = encoder(self.input_tensor, hidden_size * 2)

                mean = encoded[:, :hidden_size]
                stddev = tf.sqrt(tf.square(encoded[:, hidden_size:]))

                epsilon = tf.random_normal([tf.shape(mean)[0], hidden_size])
                input_sample = mean + epsilon * stddev
                # G = decoder(tf.random_normal([batch_size, hidden_size]))
                G_params_num = len(tf.trainable_variables())
                G = decoder(input_sample)
                self.sampled_tensor = G

            with tf.variable_scope("model", reuse=True):
                D2 = discriminator(G)  # generated examples
                encoded1 = encoder(self.xs2, hidden_size * 2)

                mean1 = encoded1[:, :hidden_size]
                stddev1 = tf.sqrt(tf.square(encoded1[:, hidden_size:]))

                epsilon1 = tf.random_normal([tf.shape(mean1)[0], hidden_size])
                input_sample1 = mean1 + epsilon1 * stddev1

                output_tensor1 = decoder(input_sample1)

        D_loss = self.__get_discrinator_loss(D1, D2)
        G_loss = self.__get_generator_loss(D2, mean, stddev, mean1)

        params = tf.trainable_variables()
        D_params = params[:D_params_num]
        G_params = params[G_params_num:]
        #    train_discrimator = optimizer.minimize(loss=D_loss, var_list=D_params)
        # train_generator = optimizer.minimize(loss=G_loss, var_list=G_params)
        global_step = tf.contrib.framework.get_or_create_global_step()
        self.train_discrimator = layers.optimize_loss(D_loss,
                                                      global_step,
                                                      learning_rate / 10,
                                                      'Adam',
                                                      variables=D_params,
                                                      update_ops=[])
        self.train_generator = layers.optimize_loss(G_loss,
                                                    global_step,
                                                    learning_rate,
                                                    'Adam',
                                                    variables=G_params,
                                                    update_ops=[])

        self.sess = tf.Session()
        self.sess.run(tf.global_variables_initializer())
Example #15
0
    def __init__(self, input_size, hidden_size, batch_size, learning_rate,
                 log_dir):
        self.input_tensor = tf.placeholder(tf.float32, [None, 3 * input_size])
        self.s_t_p_placeholder = tf.placeholder(tf.float32,
                                                [None, hidden_size])
        '''
        ##################################
        with open('params.txt') as f:
            first = f.readline()
            first = first.strip('\n')
            temp = first.split(' ')
            o_p_dim = int(temp[3]);
            s_p_dim = int(temp[4]);
            ln = f.readline()
            for i in range(s_p_dim):
                temp = f.readline()
            self.sig_2_init = np.zeros((s_p_dim, s_p_dim), np.float32)
            for i in range(s_p_dim):
                temp = f.readline().strip('\n').split(' ')
                for j in range(s_p_dim):
                    self.sig_2_init[i,j] = float(temp[j])
            
            eig_val , eig_vec = np.linalg.eig(self.sig_2_init)
            cf = np.sqrt(np.repeat(eig_val,s_p_dim).reshape(s_p_dim,s_p_dim).transpose())
            self.r_2_init = np.multiply(cf,eig_vec)
            
            self.sig_3_init = np.zeros((o_p_dim, o_p_dim), np.float32)
            for i in range(o_p_dim):
                temp = f.readline().strip('\n').split(' ')
                for j in range(o_p_dim):
                    self.sig_3_init[i,j] = float(temp[j])
            
            eig_val , eig_vec = np.linalg.eig(self.sig_3_init)
            cf = np.sqrt(np.repeat(eig_val,o_p_dim).reshape(o_p_dim,o_p_dim).transpose())
            self.r_3_init = np.multiply(cf,eig_vec)
            
            self.a_2_init = np.zeros((s_p_dim, s_p_dim), np.float32)
            for i in range(s_p_dim):
                temp = f.readline().strip('\n').split(' ')
                for j in range(s_p_dim):
                    self.a_2_init[i,j] = float(temp[j])
            
            self.a_3_init = np.zeros((s_p_dim, o_p_dim), np.float32)
            for i in range(s_p_dim):
                temp = f.readline().strip('\n').split(' ')
                for j in range(o_p_dim):
                    self.a_3_init[i,j] = float(temp[j])     
        ###################################
        '''

        with arg_scope([layers.fully_connected], activation_fn=tf.nn.relu):
            with tf.variable_scope("encoder"):
                with tf.variable_scope("encoder_s_t"):
                    self.s_t_minus_1_p = encoder(self.input_tensor[:, :input_size],\
                        hidden_size)
                with tf.variable_scope("encoder_s_t", reuse=True):
                    self.s_t_p = encoder(self.input_tensor[:, input_size:2 * input_size],\
                        hidden_size)
                with tf.variable_scope("encoder_o_t"):
                    self.o_t_p = encoder(self.input_tensor[:, 2 * input_size:],\
                        hidden_size)

            with tf.variable_scope("decoder"):
                with tf.variable_scope("decoder_s_t"):
                    self.output_s_t_minus_1 = decoder(self.s_t_minus_1_p,
                                                      input_size)
                with tf.variable_scope("decoder_s_t", reuse=True):
                    self.output_s_t = decoder(self.s_t_p, input_size)
                with tf.variable_scope("decoder_s_t", reuse=True):
                    self.s_t_decoded = decoder(self.s_t_p_placeholder,
                                               input_size)
                with tf.variable_scope("decoder_o_t"):
                    self.output_o_t = decoder(self.o_t_p, input_size)
            self.output_tensor = tf.concat(
                [self.output_s_t_minus_1, self.output_s_t, self.output_o_t],
                axis=1)

            #self.a_2, self.b_2, self.sigma_2, self.a_3, self.b_3, self.sigma_3 = self._MLE_Gaussian_params()
            self.a_2, self.b_2, self.sigma_2, self.a_3, self.b_3, self.sigma_3 = self._simple_Gaussian_params(
            )
            #self.a_2, self.b_2, self.sigma_2, self.a_3, self.b_3, self.sigma_3 = self._simple_Gaussian_plus_offset_params()
            self.r_2 = tf.cholesky(self.sigma_2)
            self.r_3 = tf.cholesky(self.sigma_3)

            #define reconstruction loss
            reconstruction_loss = tf.reduce_mean(tf.norm(self.output_tensor - \
                self.input_tensor, axis=1))

            # define classification loss
            y_1 = self.s_t_p - tf.matmul(self.s_t_minus_1_p, self.a_2)
            mvn_1 = tf.contrib.distributions.MultivariateNormalFull(
                self.b_2, self.sigma_2)
            #mvn_1 = tf.contrib.distributions.MultivariateNormalTrill(self.b_2, scale_tril=self.r_2)
            pos_samples_1 = mvn_1.sample(batch_size)

            y_2 = self.o_t_p - tf.matmul(self.s_t_p, self.a_3)
            #mvn_2 = tf.contrib.distributions.MultivariateNormalTriL(self.b_3, scale_tril=self.r_3)
            mvn_2 = tf.contrib.distributions.MultivariateNormalFull(
                self.b_3, self.sigma_3)
            pos_samples_2 = mvn_2.sample(batch_size)

            with tf.variable_scope('discriminator'):
                with tf.variable_scope('d1'):
                    pos_samples_1_pred = discriminator(pos_samples_1)
                with tf.variable_scope('d1', reuse=True):
                    neg_samples_1_pred = discriminator(y_1)
                with tf.variable_scope('d2'):
                    pos_samples_2_pred = discriminator(pos_samples_2)
                with tf.variable_scope('d2', reuse=True):
                    neg_samples_2_pred = discriminator(y_2)
            classification_loss_1 = compute_classification_loss(
                pos_samples_1_pred, neg_samples_1_pred)
            classification_loss_2 = compute_classification_loss(
                pos_samples_2_pred, neg_samples_2_pred)
            classification_loss = classification_loss_1 + classification_loss_2

            # define s_t likelihood
            s_diff = self.s_t_p - tf.matmul(self.s_t_minus_1_p, self.a_2)
            s_t_likelihood = tf.reduce_sum(mvn_1.log_prob(s_diff))

            # define o_t likelihood
            o_diff = self.o_t_p - tf.matmul(self.s_t_p, self.a_3)
            o_t_likelihood = tf.reduce_sum(mvn_2.log_prob(o_diff))

            self.likelihood = s_t_likelihood + o_t_likelihood

            # add summary ops
            tf.summary.scalar('likelihood', self.likelihood)
            tf.summary.scalar('s_t_likelihood', s_t_likelihood)
            tf.summary.scalar('o_t_likelihood', o_t_likelihood)
            tf.summary.scalar('classification_loss', classification_loss)
            tf.summary.scalar('classification_loss_1', classification_loss_1)
            tf.summary.scalar('classification_loss_2', classification_loss_2)
            tf.summary.scalar('reconstruction_loss', reconstruction_loss)

            # define references to params
            encoder_params = tf.get_collection(
                tf.GraphKeys.TRAINABLE_VARIABLES, scope='encoder')
            decoder_params = tf.get_collection(
                tf.GraphKeys.TRAINABLE_VARIABLES, scope='decoder')
            autoencoder_params = encoder_params + decoder_params
            gaussian_params = [self.a_2, self.a_3, self.r_2, self.r_3]
            discriminator_params = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, \
                scope='discriminator')

            global_step = tf.contrib.framework.get_or_create_global_step()
            # define training steps
            self.learn_rate = self._get_learn_rate(global_step, learning_rate)

            # update autoencoder params to minimise reconstruction loss
            self.train_autoencoder = layers.optimize_loss(reconstruction_loss, \
                    global_step, self.learn_rate * 0.1, optimizer=lambda lr: \
                    tf.train.AdamOptimizer(lr), variables=\
                    #tf.train.MomentumOptimizer(lr, 0.9), variables=\
                    autoencoder_params, update_ops=[])

            # update discriminator
            self.train_discriminator = layers.optimize_loss(classification_loss, \
                    global_step, self.learn_rate * 10, optimizer=lambda lr: \
                    tf.train.MomentumOptimizer(lr, 0.1), variables=\
                    #tf.train.AdamOptimizer(lr), variables=\
                    discriminator_params, update_ops=[])

            # update encoder params to fool the discriminator
            self.train_encoder = layers.optimize_loss(-classification_loss, \
                    global_step, self.learn_rate , optimizer=lambda lr: \
                    #tf.train.MomentumOptimizer(lr, 0.9), variables=\
                    tf.train.AdamOptimizer(lr), variables=\
                    encoder_params, update_ops=[])

            self.sess = tf.Session()
            self.merged = tf.summary.merge_all()
            self.train_writer = tf.summary.FileWriter(log_dir, \
                self.sess.graph)
            self.sess.run(tf.global_variables_initializer())
    def __init__(self, hidden_size, batch_size, learning_rate, log_dir):
        self.input_tensor = tf.placeholder(tf.float32, [None, 28 * 28])
        # add gaussian noise to the input
        input_with_noise = gaussian_noise_layer(self.input_tensor, 0.3)

        with arg_scope([layers.fully_connected], activation_fn=tf.nn.relu):
            with tf.variable_scope("encoder"):
                self.latent_representation = encoder(input_with_noise,
                        hidden_size)
                encoder_params_num = len(tf.trainable_variables())
            with tf.variable_scope('encoder', reuse=True):
                self.true_latent_representation = encoder(self.input_tensor,
                        hidden_size)
            with tf.variable_scope('decoder'):
                self.recons = decoder(self.latent_representation)
                autoencoder_params_num = len(tf.trainable_variables())
            with tf.variable_scope('decoder', reuse=True):
                self.sampled_imgs = decoder(tf.random_normal([batch_size,
                        hidden_size]))

            pos_samples = tf.random_normal([batch_size, hidden_size],
                stddev=5.)
            neg_samples = self.latent_representation
            with tf.variable_scope('discriminator'):
                pos_samples_pred = discriminator(pos_samples)
            with tf.variable_scope('discriminator', reuse=True):
                neg_samples_pred = discriminator(neg_samples)
            #define losses
            reconstruction_loss = tf.reduce_mean(tf.square(self.recons -
                    self.input_tensor)) #* 28 * 28 scale recons loss
            classification_loss = tf.losses.sigmoid_cross_entropy(\
                    tf.ones(tf.shape(pos_samples_pred)), pos_samples_pred) +\
                    tf.losses.sigmoid_cross_entropy(tf.zeros(
                    tf.shape(neg_samples_pred)), neg_samples_pred)
            tf.summary.scalar('reconstruction_loss', reconstruction_loss)
            tf.summary.scalar('classification_loss', classification_loss)
            # define references to params
            params = tf.trainable_variables()
            encoder_params = params[:encoder_params_num]
            decoder_params = params[encoder_params_num:autoencoder_params_num]
            autoencoder_params = encoder_params + decoder_params
            discriminator_params = params[autoencoder_params_num:]
            # record true positive rate and true negative rate
            correct_pred_pos = tf.equal(tf.cast(pos_samples_pred>0, tf.float32),
                tf.ones(tf.shape(pos_samples_pred)))
            self.true_pos_rate = tf.reduce_mean(tf.cast(correct_pred_pos,
                tf.float32))
            correct_pred_neg = tf.equal(tf.cast(neg_samples_pred<0, tf.float32),
                tf.ones(tf.shape(pos_samples_pred)))
            self.true_neg_rate = tf.reduce_mean(tf.cast(correct_pred_neg,
                tf.float32))
            tf.summary.scalar('true_pos_rate', self.true_pos_rate)
            tf.summary.scalar('true_neg_rate', self.true_neg_rate)
            global_step = tf.contrib.framework.get_or_create_global_step()
            self.learn_rate = self._get_learn_rate(global_step, learning_rate)
            self.train_autoencoder = layers.optimize_loss(reconstruction_loss,
                    global_step, self.learn_rate/10, optimizer=lambda lr: \
                    tf.train.MomentumOptimizer(lr, momentum=0.9), variables=
                    autoencoder_params, update_ops=[])
            self.train_discriminator = layers.optimize_loss(classification_loss,
                    global_step, self.learn_rate, optimizer=lambda lr: \
                    tf.train.MomentumOptimizer(lr, momentum=0.1), variables=
                    discriminator_params, update_ops=[])
            self.train_encoder = layers.optimize_loss(-classification_loss,
                    global_step, self.learn_rate/10, optimizer=lambda lr: \
                    tf.train.MomentumOptimizer(lr, momentum=0.1), variables=
                    encoder_params, update_ops=[])
            self.sess = tf.Session()
            self.merged = tf.summary.merge_all()
            self.train_writer = tf.summary.FileWriter(log_dir,
                                      self.sess.graph)
            self.sess.run(tf.global_variables_initializer())