Example #1
0
    def forward(self, input, hidden, return_h=False):
        batch_size = input.size(1)

        emb = embedded_dropout(self.encoder,
                               input,
                               dropout=self.dropoute if self.training else 0)
        emb = self.lockdrop(emb, self.dropouti)

        raw_output = emb
        new_hidden = []
        raw_outputs = []
        outputs = []
        for l, rnn in enumerate(self.rnns):
            raw_output, new_h = rnn(raw_output, hidden[l])
            new_hidden.append(new_h)
            raw_outputs.append(raw_output)
        hidden = new_hidden

        output = self.lockdrop(raw_output, self.dropout)
        outputs.append(output)

        logit = self.decoder(output.view(-1, self.ninp))
        log_prob = nn.functional.log_softmax(logit, dim=-1)
        model_output = log_prob
        model_output = model_output.view(-1, batch_size, self.ntoken)

        if return_h:
            return model_output, hidden, raw_outputs, outputs
        return model_output, hidden
Example #2
0
    def forward(self, input, hidden, genotype, return_h=False):  # 传入的hidden注意下
        batch_size = input.size(1)

        emb = embedded_dropout(self.encoder,
                               input,
                               dropout=self.dropout_e if self.training else 0)
        emb = self.lockdrop(emb, self.dropout_i)

        raw_output = emb

        raw_output, new_h = self.rnn(
            raw_output, hidden, genotype)  # hidden states, last hidden states
        hidden = new_h
        output = self.lockdrop(raw_output,
                               self.dropout)  # raw output是rnn每个t时刻的hidden

        # 下面这层,实际上就是hidden->output的那个线性层
        logit = self.decoder(output.view(
            -1, self.n_inp))  # 计算这个batch的logit值,view一下一起计算
        log_prob = nn.functional.log_softmax(logit, dim=-1)
        model_output = log_prob
        model_output = model_output.view(-1, batch_size, self.n_token)

        if return_h:
            return model_output, hidden, raw_output, output
        return model_output, hidden
    def forward(self, input, hidden_input_all, BN_start=0):
        seq_len, batch_size = input.size()
        rnnoutputs = {}
        hidden_x = {}
        if hidden_input_all is not None:
            hidden_x.update(hidden_input_all)
        else:
            for x in range(len(self.RNNs)):
                hidden_x['hidden%d' % x] = Variable(
                    torch.zeros(1, batch_size, args.hidden_size).cuda())
            hidden_x['hidden_lastindrnn'] = Variable(
                torch.zeros(1, batch_size, args.embed_size).cuda())

        input = input.view(seq_len * batch_size)
        input = embedded_dropout(
            self.encoder,
            input,
            dropout=args.dropout_embedding if self.training else 0)
        input = input.view(seq_len, batch_size, args.embed_size)
        if args.dropout_words > 0:
            input = dropout_overtime(input, args.dropout_words, self.training)

        rnnoutputs['outlayer-1'] = input
        for x in range(len(self.RNNs)):
            rnnoutputs['dilayer%d' % x] = self.DIs[x](rnnoutputs['outlayer%d' %
                                                                 (x - 1)])
            rnnoutputs['outlayer%d' %
                       x], hidden_x['hidden%d' % x] = self.RNNs[x](
                           rnnoutputs['dilayer%d' % x], BN_start,
                           hidden_x['hidden%d' % x])
            if args.dropout > 0:
                dropout = args.dropout
                if x == len(self.RNNs) - 1:
                    dropout = args.dropout_last
                rnnoutputs['outlayer%d' % x] = dropout_overtime(
                    rnnoutputs['outlayer%d' % x], dropout, self.training)

        rnn_out = rnnoutputs['outlayer%d' % (len(self.RNNs) - 1)]
        rnn_out = self.last_fc(rnn_out)
        rnn_out, hidden_x['hidden_lastindrnn'] = self.last_indrnn(
            rnn_out, BN_start, hidden_x['hidden_lastindrnn'])
        if args.bn_location == 'bn_before':
            rnn_out = self.extra_bn(rnn_out, BN_start)
        rnn_out = dropout_overtime(rnn_out, args.dropout_extrafc,
                                   self.training)
        rnn_out = rnn_out.view(seq_len * batch_size, -1)
        output = self.decoder(rnn_out)
        return output, hidden_x
    def forward(self, input, hidden_input_all, BN_start=0):
        seq_len, batch_size = input.size()
        rnnoutputs = {}
        hidden_x = {}
        hid_ind_layer = 0
        if hidden_input_all is not None:
            hidden_x.update(hidden_input_all)
        input = input.view(seq_len * batch_size)
        input = embedded_dropout(
            self.encoder,
            input,
            dropout=args.dropout_embedding if self.training else 0)
        input = input.view(seq_len, batch_size, args.embed_size)
        if args.dropout_words > 0:
            input = dropout_overtime(input, args.dropout_words,
                                     self.training)  #

        rnnoutputs['trans_outlayer-1'] = input
        for i in range(self.num_blocks):
            rnnoutputs['dense_outlayer%d' %
                       i], hidden_x, hid_ind_layer = self.DenseBlocks[i](
                           rnnoutputs['trans_outlayer%d' % (i - 1)], BN_start,
                           hidden_x, hid_ind_layer)
            if i != self.num_blocks - 1:
                rnnoutputs['trans_outlayer%d' %
                           i], hidden_x, hid_ind_layer = self.TransBlocks[i](
                               rnnoutputs['dense_outlayer%d' % i], BN_start,
                               hidden_x, hid_ind_layer)
        rnnoutputs['trans_outlayer%d' %
                   (self.num_blocks -
                    1)], hidden_x, hid_ind_layer = self.TransBlocks[
                        self.num_blocks - 1](rnnoutputs['dense_outlayer%d' %
                                                        (self.num_blocks - 1)],
                                             BN_start, hidden_x, hid_ind_layer)

        rnn_out = rnnoutputs['trans_outlayer%d' % (self.num_blocks - 1)]
        rnn_out = rnn_out.view(seq_len * batch_size, args.embed_size)
        rnn_out = self.decoder(rnn_out)
        return rnn_out, hidden_x
    def forward(self, input,hidden_input_all, BN_start=0): 
        seq_len, batch_size = input.size()
        rnnoutputs={}
        hidden_x={}     
        if hidden_input_all is not None:
            hidden_x.update(hidden_input_all)   
        else:
            for x in range(2*len(self.resblocks)):
                hidden_x['hidden%d'%x]=Variable(torch.zeros(1,batch_size,args.hidden_size).cuda())
            hidden_x['hidden_resfinal']=Variable(torch.zeros(1,batch_size,args.hidden_size).cuda())
            hidden_x['hidden_lastindrnn']=Variable(torch.zeros(1,batch_size,args.embed_size).cuda())
        
        input = input.view(seq_len * batch_size)
        input = embedded_dropout(self.encoder,input, dropout=args.dropout_embedding if self.training else 0)
        input = input.view(seq_len, batch_size, args.embed_size)
        if args.dropout_words > 0:            
            input = dropout_overtime(input, args.dropout_words, self.training)#  
        
        rnnoutputs['outlayer-1']=self.fc0(input)    
        for x in range(len(self.resblocks)):   
            rnnoutputs['outlayer%d'%x],hidden_x['hidden%d'%(2*x)],hidden_x['hidden%d'%(2*x+1)]= self.resblocks[x](rnnoutputs['outlayer%d'%(x-1)], BN_start, hidden_x['hidden%d'%(2*x)], hidden_x['hidden%d'%(2*x+1)])   

        rnn_out=rnnoutputs['outlayer%d'%(len(self.resblocks)-1)]
        rnn_out,hidden_x['hidden_resfinal']=self.IndRNNwithBN_resfinal(rnn_out, BN_start, hidden_x['hidden_resfinal'])  
        if args.dropout_last>0:
            rnn_out=dropout_overtime(rnn_out,args.dropout_last, self.training)

        rnn_out=self.last_fc(rnn_out)        
        rnn_out1, hidden_x['hidden_lastindrnn']=self.last_indrnn(rnn_out, BN_start, hidden_x['hidden_lastindrnn'])
        if args.bn_location=='bn_before':
            rnn_out1=self.extra_bn(rnn_out1, BN_start)
        if args.dropout_extrafc>0:
           rnn_out1=dropout_overtime(rnn_out1,args.dropout_extrafc, self.training)

        rnn_out1 = rnn_out1.view(seq_len * batch_size, args.embed_size)
        rnn_out1=self.decoder(rnn_out1)        
        return rnn_out1, hidden_x