Example #1
0
def getMaskVolumes():

    csvLines = utils.readCsv("../trainset_csv/trainNodules_gt.csv")
    last_ID = 0
    scan = 0
    spacing = 0
    origin = 0

    maskVolumesList = []

    # ignore header
    for line in csvLines[1:]:

        # get image of this patient only one time (there are repeated patient ids)
        current_ID = line[0]
        if last_ID != current_ID:
            print(getFileID(current_ID))
            scan, spacing, origin, _ = utils.readMhd(
                '../LNDb dataset/dataset/LNDb-' + getFileID(current_ID) +
                '.mhd')
            spacing = [float(spacing[i]) for i in range(3)]

        # find the coordinates of the current nodule (it is done for every line of the csv)
        finding_coords = line[4:7]

        nodule_x = (float(finding_coords[0]) - float(origin[0])) / float(
            spacing[0])
        nodule_y = (float(finding_coords[1]) - float(origin[1])) / float(
            spacing[1])
        nodule_z = (float(finding_coords[2]) - float(origin[2])) / float(
            spacing[2])
        real_coords = [nodule_x, nodule_y, nodule_z]

        # get a mask for the image of this patient (from one of the radiologists that found the current nodule)
        radiologists = line[
            1]  # list of radiologists that found the current nodule
        radId = str(
            radiologists[0]
        )  # always choose the mask from the first radiologist in the list
        mask, _, _, _ = utils.readMhd('../LNDb dataset/masks/LNDb-' +
                                      getFileID(current_ID) + '_rad' + radId +
                                      '.mhd')

        # extract mini cube of the current nodule on the masked scan
        mask_volume = utils.extractCube(mask,
                                        spacing,
                                        real_coords,
                                        cube_size=80)

        # add mask volumes to the list
        maskVolumesList.append(mask_volume)

        last_ID = current_ID

    return maskVolumesList
Example #2
0
def load_image(img_name, centers):
    ''' loads a single image and returns a list of subimages (cubes around nodule-like
            findings)  

        img_name: valid path to an image from current working directory
        centers: a list of the centroids of nodule-like occurrences in img
                in world coordinates
    '''
    scan, spacing, origin, transfmat = readMhd(img_name)
    transfmat_toimg, _ = getImgWorldTransfMats(spacing,
                                               transfmat)  # just need image
    centers = [convertToImgCoord(c, origin, transfmat_toimg) for c in centers]

    subimages = [extractCube(scan, spacing, c) for c in centers]
    return subimages
Example #3
0
def createCube(cubeSize=80):
    csvLines = readCsv("csv/trainSet.csv")
    header = csvLines[0]
    nodules = csvLines[1:]

    for i, n in tqdm(enumerate(nodules[:1])):
        x = int(n[header.index("x")])
        y = int(n[header.index("y")])
        z = int(n[header.index("z")])

        lnd = int(n[header.index("LNDbID")])

        ctr = np.array([x, y, z])
        [scan, spacing, _, _] = readMhd('data/LNDb-{:04}.mhd'.format(lnd))
        cube = extractCube(scan, spacing, ctr, cubeSize)

        np.save("cube/{:0}.npy".format(i), cube)
Example #4
0
def getCubes(cubeSize):
    csvLines = utils.readCsv("../trainset_csv/trainNodules_gt.csv")
    last_ID = 0
    scan = 0
    spacing = 0
    origin = 0
    
    cubeList = []    
    textures = [row[-1] for row in csvLines]

    # delete 1st element (header)
    del textures[0]

    # ignore header
    for line in csvLines[1:]:
                
        current_ID = line[0]
        if last_ID != current_ID:
            print(getFileID(current_ID))
            scan,spacing,origin,_ = utils.readMhd('../LNDb dataset/dataset/LNDb-' + getFileID(current_ID) + '.mhd')
            spacing = [float(spacing[i]) for i in range(3)]

        finding_coords = line[4:7]
        
        nodule_x = (float(finding_coords[0]) - float(origin[0])) / float(spacing[0])
        nodule_y = (float(finding_coords[1]) - float(origin[1])) / float(spacing[1])
        nodule_z = (float(finding_coords[2]) - float(origin[2])) / float(spacing[2])
        real_coords = [nodule_x, nodule_y, nodule_z]

        scan_cube = utils.extractCube(scan, spacing, real_coords, cube_size=cubeSize)
        
        cubeList.append(scan_cube)

        # nodule_coords
        last_ID = current_ID
    
    return cubeList, textures
Example #5
0
 # Read scan
 if lnd!=lndloaded:
         [scan,spacing,origin,transfmat] =  readMhd('/media/tungthanhlee/SSD/grand_challenge/dataset/LNDB_segmentation/data/LNDb-{:04}.mhd'.format(lnd))                
         transfmat_toimg,transfmat_toworld = getImgWorldTransfMats(spacing,transfmat)
         lndloaded = lnd
 
 # Convert coordinates to image
 ctr = convertToImgCoord(ctr,origin,transfmat_toimg)                
 
 
 # for rad,radfinding in zip(rads,radfindings):
 # Read segmentation mask
 [mask,_,_,_] =  readMhd('/media/tungthanhlee/SSD/grand_challenge/dataset/LNDB_segmentation/masks/LNDb-{:04}_rad{}.mhd'.format(lnd,rad))
 
 # Extract cube around nodule
 scan_cube = extractCube(scan,spacing,ctr)
 masknod = copy.copy(mask)
 # masknod[masknod!=radfinding] = 0
 masknod[masknod!=finding] = 0
 masknod[masknod>0] = 1
 mask_cube = extractCube(masknod,spacing,ctr)
 
 # Display mid slices from resampled scan/mask
 if dispFlag:
         fig, axs = plt.subplots(2,3)
         axs[0,0].imshow(scan_cube[int(scan_cube.shape[0]/2),:,:])
         axs[1,0].imshow(mask_cube[int(mask_cube.shape[0]/2),:,:])
         axs[0,1].imshow(scan_cube[:,int(scan_cube.shape[1]/2),:])
         axs[1,1].imshow(mask_cube[:,int(mask_cube.shape[1]/2),:])
         axs[0,2].imshow(scan_cube[:,:,int(scan_cube.shape[2]/2)])
         axs[1,2].imshow(mask_cube[:,:,int(mask_cube.shape[2]/2)])    
Example #6
0
    if lnd != lndloaded:
        [scan, spacing, origin,
         transfmat] = readMhd('data/LNDb-{:04}.mhd'.format(lnd))
        transfmat_toimg, transfmat_toworld = getImgWorldTransfMats(
            spacing, transfmat)
        lndloaded = lnd

    # Convert coordinates to image
    ctr = convertToImgCoord(ctr, origin, transfmat_toimg)

    #for rad,radfinding in zip(rads,radfindings):
    # Read segmentation mask
    #[mask,_,_,_] =  readMhd('masks/LNDb-{:04}_rad{}.mhd'.format(lnd,rad))

    # Extract cube around nodule
    scan_cube = extractCube(scan, spacing, ctr)
    """masknod = copy.copy(mask)
        masknod[masknod!=radfinding] = 0
        masknod[masknod>0] = 1
        mask_cube = extractCube(masknod,spacing,ctr)"""

    slice1 = scan_cube[int(scan_cube.shape[0] / 2), :, :]
    slice2 = scan_cube[:, int(scan_cube.shape[1] / 2), :]
    slice3 = scan_cube[:, :, int(scan_cube.shape[2] / 2)]
    # Display mid slices from resampled scan/mask
    if dispFlag:
        fig, axs = plt.subplots(2, 3)
        axs[0, 0].imshow(slice1)
        axs[1, 0].imshow(mask_cube[int(mask_cube.shape[0] / 2), :, :])
        axs[0, 1].imshow(slice2)
        axs[1, 1].imshow(mask_cube[:, int(mask_cube.shape[1] / 2), :])
Example #7
0
        if lnd != lndloaded:
            [scan, spacing, origin,
             transfmat] = readMhd('../Dataset/LNDb-{:04}.mhd'.format(lnd))
            transfmat_toimg, transfmat_toworld = getImgWorldTransfMats(
                spacing, transfmat)
            lndloaded = lnd

        # Convert coordinates to image
        ctr = convertToImgCoord(ctr, origin, transfmat_toimg)

        # Read segmentation mask
        [mask, _, _,
         _] = readMhd('../Dataset/masks/LNDb-{:04}_rad{}.mhd'.format(lnd, rad))

        # Extract cube around nodule
        scan_cube = extractCube(scan, spacing, ctr)
        masknod = copy.copy(mask)
        masknod[masknod != finding] = 0  #is radfinding on other file.
        masknod[masknod > 0] = 1
        mask_cube = extractCube(masknod, spacing, ctr, cube_size, voxel_size)

        print(mask_cube)

        # Display mid slices from resampled scan/mask
        if dispFlag:
            fig, axs = plt.subplots(2, 3)
            axs[0, 0].imshow(scan_cube[int(scan_cube.shape[0] / 2), :, :])
            axs[1, 0].imshow(mask_cube[int(mask_cube.shape[0] / 2), :, :])

            axs[0, 1].imshow(scan_cube[:, int(scan_cube.shape[1] / 2), :])
            axs[1, 1].imshow(mask_cube[:, int(mask_cube.shape[1] / 2), :])
Example #8
0
         transfmat] = readMhd('data/LNDb-{:04}.mhd'.format(lnd))
        transfmat_toimg, transfmat_toworld = getImgWorldTransfMats(
            spacing, transfmat)
        lndloaded = lnd

    # Convert coordinates to image
#------------------------------------------------------------------------------
    ctr = convertToImgCoord(ctr, origin, transfmat_toimg)
    OriginalCTR = ctr
    for rad, radfinding in zip(rads, radfindings):
        # Read segmentation mask
        [mask, _, _,
         _] = readMhd('masks/LNDb-{:04}_rad{}.mhd'.format(lnd, rad))

        # Extract cube around nodule
        scan_cube = extractCube(scan, spacing, ctr)
        masknod = copy.copy(mask)
        masknod[masknod != radfinding] = 0
        masknod[masknod > 0] = 1
        mask_cube = extractCube(masknod, spacing, ctr)
        img1 = mask_cube[int(mask_cube.shape[0] / 2), :, :]
        img2 = mask_cube[:, int(mask_cube.shape[1] / 2), :]
        img3 = mask_cube[:, :, int(mask_cube.shape[2] / 2)]
        XValues = []
        YValues = []
        ZValues = []
        XLayers = []
        YLayers = []
        ZLayers = []
        E = 0
        fil, col = img1.shape