def forward_born(model, src_coords, wavelet, rec_coords, space_order=8, nb=40, isic=False, dt=None, free_surface=False): clear_cache() # Parameters nt = wavelet.shape[0] if dt is None: dt = model.critical_dt m, rho, dm, damp = model.m, model.rho, model.dm, model.damp # Create the forward and linearized wavefield u = TimeFunction(name="u", grid=model.grid, time_order=2, space_order=space_order) du = TimeFunction(name="du", grid=model.grid, time_order=2, space_order=space_order) if len(model.shape) == 2: x,y = u.space_dimensions else: x,y,z = u.space_dimensions # Set up PDEs and rearrange ulaplace, rho = acoustic_laplacian(u, rho) dulaplace, _ = acoustic_laplacian(du, rho) if isic: # Sum ((u.dx * d, / rho).dx for x in dimensions) # space_order//2 so that u.dx.dx has the same radius as u.laplace du_aux = sum([first_derivative(first_derivative(u, dim=d, fd_order=space_order//2) * dm / rho, fd_order=space_order//2, dim=d) for d in u.space_dimensions]) lin_source = dm /rho * u.dt2 * m - du_aux else: lin_source = dm / rho * u.dt2 stencil_u = damp * (2.0 * u - damp * u.backward + dt**2 * rho / m * ulaplace) stencil_du = damp * (2.0 * du - damp * du.backward + dt**2 * rho / m * (dulaplace - lin_source)) expression_u = [Eq(u.forward, stencil_u)] expression_du = [Eq(du.forward, stencil_du)] # Define source symbol with wavelet src = PointSource(name='src', grid=model.grid, ntime=nt, coordinates=src_coords) src.data[:] = wavelet[:] src_term = src.inject(field=u.forward, expr=src * rho * dt**2 / m) # Define receiver symbol rec = Receiver(name='rec', grid=model.grid, ntime=nt, coordinates=rec_coords) rec_term = rec.interpolate(expr=du) expression = expression_u + expression_du + src_term + rec_term # Free surface if free_surface is True: expression += freesurface(u, space_order//2, model.nbpml) expression += freesurface(du, space_order//2, model.nbpml) # Create operator and run set_log_level('ERROR') subs = model.spacing_map subs[u.grid.time_dim.spacing] = dt op = Operator(expression, subs=subs, dse='advanced', dle='advanced') op() return rec.data
def forward_freq_modeling(model, src_coords, wavelet, rec_coords, freq, space_order=8, dt=None, factor=None, free_surface=False): # Forward modeling with on-the-fly DFT of forward wavefields clear_cache() # Parameters nt = wavelet.shape[0] if dt is None: dt = model.critical_dt m, rho, damp = model.m, model.rho, model.damp freq_dim = Dimension(name='freq_dim') time = model.grid.time_dim if factor is None: factor = int(1 / (dt*4*np.max(freq))) tsave = ConditionalDimension(name='tsave', parent=model.grid.time_dim, factor=factor) if factor==1: tsave = time else: tsave = ConditionalDimension(name='tsave', parent=model.grid.time_dim, factor=factor) print("DFT subsampling factor: ", factor) # Create wavefields nfreq = freq.shape[0] u = TimeFunction(name='u', grid=model.grid, time_order=2, space_order=space_order) f = Function(name='f', dimensions=(freq_dim,), shape=(nfreq,)) f.data[:] = freq[:] ufr = Function(name='ufr', dimensions=(freq_dim,) + u.indices[1:], shape=(nfreq,) + model.shape_domain) ufi = Function(name='ufi', dimensions=(freq_dim,) + u.indices[1:], shape=(nfreq,) + model.shape_domain) ulaplace, rho = acoustic_laplacian(u, rho) # Set up PDE and rearrange stencil = damp * (2.0 * u - damp * u.backward + dt**2 * rho / m * ulaplace) expression = [Eq(u.forward, stencil)] expression += [Eq(ufr, ufr + factor*u*cos(2*np.pi*f*tsave*factor*dt))] expression += [Eq(ufi, ufi - factor*u*sin(2*np.pi*f*tsave*factor*dt))] # Source symbol with input wavelet src = PointSource(name='src', grid=model.grid, ntime=nt, coordinates=src_coords) src.data[:] = wavelet[:] src_term = src.inject(field=u.forward, expr=src * dt**2 / m) # Data is sampled at receiver locations rec = Receiver(name='rec', grid=model.grid, ntime=nt, coordinates=rec_coords) rec_term = rec.interpolate(expr=u) # Create operator and run expression += src_term + rec_term # Free surface if free_surface is True: expression += freesurface(u, space_order//2, model.nbpml) subs = model.spacing_map subs[u.grid.time_dim.spacing] = dt op = Operator(expression, subs=subs, dse='advanced', dle='advanced') cf = op.cfunction op() return rec.data, ufr, ufi
def adjoint_modeling(model, src_coords, rec_coords, rec_data, space_order=8, free_surface=False, dt=None): clear_cache() # If wavelet is file, read it if isinstance(rec_data, str): rec_data = np.load(rec_data) # Parameters nt = rec_data.shape[0] if dt is None: dt = model.critical_dt m, rho, damp = model.m, model.rho, model.damp # Create the adjoint wavefield if src_coords is not None: v = TimeFunction(name="v", grid=model.grid, time_order=2, space_order=space_order) else: v = TimeFunction(name="v", grid=model.grid, time_order=2, space_order=space_order, save=nt) # Set up PDE and rearrange vlaplace, rho = acoustic_laplacian(v, rho) # Input data is wavefield full_q = 0 if isinstance(rec_data, TimeFunction): wf_rec = TimeFunction(name='wf_rec', grid=model.grid, time_order=2, space_order=space_order, save=nt) wf_rec._data = rec_data._data full_q = wf_rec stencil = damp * (2.0 * v - damp * v.forward + dt**2 * rho / m * (vlaplace + full_q)) expression = [Eq(v.backward, stencil)] # Free surface if free_surface is True: expression += freesurface(v, space_order//2, model.nbpml, forward=False) # Adjoint source is injected at receiver locations if rec_coords is not None: rec = Receiver(name='rec', grid=model.grid, ntime=nt, coordinates=rec_coords) rec.data[:] = rec_data[:] adj_src = rec.inject(field=v.backward, expr=rec * rho * dt**2 / m) expression += adj_src # Data is sampled at source locations if src_coords is not None: src = PointSource(name='src', grid=model.grid, ntime=nt, coordinates=src_coords) adj_rec = src.interpolate(expr=v) expression += adj_rec # Create operator and run subs = model.spacing_map subs[v.grid.time_dim.spacing] = dt op = Operator(expression, subs=subs, dse='advanced', dle='advanced') cf = op.cfunction summary = op.apply() if src_coords is None: return v, summary else: return src.data, summary
def forward_modeling(model, src_coords, wavelet, rec_coords, save=False, space_order=8, nb=40, free_surface=False, op_return=False, u_return=False, dt=None, tsub_factor=1): clear_cache() # If wavelet is file, read it if isinstance(wavelet, str): wavelet = np.load(wavelet) # Parameters nt = wavelet.shape[0] if dt is None: dt = model.critical_dt m, rho, damp = model.m, model.rho, model.damp # Create the forward wavefield if save is False and rec_coords is not None: u = TimeFunction(name='u', grid=model.grid, time_order=2, space_order=space_order) eqsave = [] elif save is True and tsub_factor > 1: u = TimeFunction(name='u', grid=model.grid, time_order=2, space_order=space_order) time_subsampled = ConditionalDimension(name='t_sub', parent=u.grid.time_dim, factor=tsub_factor) nsave = (nt-1)//tsub_factor + 2 usave = TimeFunction(name='us', grid=model.grid, time_order=2, space_order=space_order, time_dim=time_subsampled, save=nsave) eqsave = [Eq(usave.forward, u.forward)] else: u = TimeFunction(name='u', grid=model.grid, time_order=2, space_order=space_order, save=nt) eqsave = [] # Set up PDE ulaplace, rho = acoustic_laplacian(u, rho) stencil = damp * ( 2.0 * u - damp * u.backward + dt**2 * rho / m * ulaplace) # Input source is wavefield if isinstance(wavelet, TimeFunction): wf_src = TimeFunction(name='wf_src', grid=model.grid, time_order=2, space_order=space_order, save=nt) wf_src._data = wavelet._data stencil -= wf_src # Rearrange expression expression = [Eq(u.forward, stencil)] # Data is sampled at receiver locations if rec_coords is not None: rec = Receiver(name='rec', grid=model.grid, ntime=nt, coordinates=rec_coords) rec_term = rec.interpolate(expr=u) expression += rec_term # Create operator and run if save: expression += eqsave # Free surface kwargs = dict() if free_surface is True: expression += freesurface(u, space_order//2, model.nbpml) # Source symbol with input wavelet if src_coords is not None: src = PointSource(name='src', grid=model.grid, ntime=nt, coordinates=src_coords) src.data[:] = wavelet[:] src_term = src.inject(field=u.forward, expr=src * rho * dt**2 / m) expression += src_term # Create operator and run set_log_level('ERROR') subs = model.spacing_map subs[u.grid.time_dim.spacing] = dt op = Operator(expression, subs=subs, dse='advanced', dle='advanced') # Return data and wavefields if op_return is False: op() if save is True and tsub_factor > 1: if rec_coords is None: return usave else: return rec.data, usave else: if rec_coords is None: return u else: return rec.data, u # For optimal checkpointing, return operator only else: return op
def adjoint_born(model, rec_coords, rec_data, u=None, op_forward=None, is_residual=False, space_order=8, nb=40, isic=False, dt=None, n_checkpoints=None, maxmem=None, free_surface=False, tsub_factor=1,): clear_cache() # Parameters nt = rec_data.shape[0] if dt is None: dt = model.critical_dt m, rho, damp = model.m, model.rho, model.damp # Create adjoint wavefield and gradient v = TimeFunction(name='v', grid=model.grid, time_order=2, space_order=space_order) gradient = Function(name='gradient', grid=model.grid) # Set up PDE and rearrange vlaplace, rho = acoustic_laplacian(v, rho) stencil = damp * (2.0 * v - damp * v.forward + dt**2 * rho / m * vlaplace) expression = [Eq(v.backward, stencil)] # Data at receiver locations as adjoint source rec_g = Receiver(name='rec_g', grid=model.grid, ntime=nt, coordinates=rec_coords) if op_forward is None: rec_g.data[:] = rec_data[:] adj_src = rec_g.inject(field=v.backward, expr=rec_g * rho * dt**2 / m) # Gradient update if u is None: u = TimeFunction(name='u', grid=model.grid, time_order=2, space_order=space_order) if isic is not True: gradient_update = [Inc(gradient, - dt * u.dt2 / rho * v)] else: # summodel0.dm = dm u.dx * v.dx fo x in dimensions. # space_order//2 diff_u_v = sum([first_derivative(u, dim=d, fd_order=space_order//2)* first_derivative(v, dim=d, fd_order=space_order//2) for d in u.space_dimensions]) gradient_update = [Inc(gradient, - tsub_factor * dt * (u * v.dt2 * m + diff_u_v) / rho)] # Free surface if free_surface is True: expression += freesurface(v, space_order//2, model.nbpml, forward=False) # Create operator and run set_log_level('ERROR') expression += gradient_update + adj_src subs = model.spacing_map subs[u.grid.time_dim.spacing] = dt op = Operator(expression, subs=subs, dse='advanced', dle='advanced') # Optimal checkpointing if op_forward is not None: rec = Receiver(name='rec', grid=model.grid, ntime=nt, coordinates=rec_coords) cp = DevitoCheckpoint([u]) if maxmem is not None: n_checkpoints = int(np.floor(maxmem * 10**6 / (cp.size * u.data.itemsize))) wrap_fw = CheckpointOperator(op_forward, u=u, m=model.m, rec=rec) wrap_rev = CheckpointOperator(op, u=u, v=v, m=model.m, rec_g=rec_g) # Run forward wrp = Revolver(cp, wrap_fw, wrap_rev, n_checkpoints, nt-2) wrp.apply_forward() # Residual and gradient if is_residual is True: # input data is already the residual rec_g.data[:] = rec_data[:] else: rec_g.data[:] = rec.data[:] - rec_data[:] # input is observed data fval = .5*np.dot(rec_g.data[:].flatten(), rec_g.data[:].flatten()) * dt wrp.apply_reverse() else: op() clear_cache() if op_forward is not None and is_residual is not True: return fval, gradient.data else: return gradient.data
def adjoint_freq_born(model, rec_coords, rec_data, freq, ufr, ufi, space_order=8, dt=None, isic=False, factor=None, free_surface=False): clear_cache() # Parameters nt = rec_data.shape[0] if dt is None: dt = model.critical_dt m, rho, damp = model.m, model.rho, model.damp nfreq = ufr.shape[0] time = model.grid.time_dim if factor is None: factor = int(1 / (dt*4*np.max(freq))) tsave = ConditionalDimension(name='tsave', parent=model.grid.time_dim, factor=factor) if factor==1: tsave = time else: tsave = ConditionalDimension(name='tsave', parent=model.grid.time_dim, factor=factor) dtf = factor * dt ntf = factor / nt print("DFT subsampling factor: ", factor) # Create the forward and adjoint wavefield v = TimeFunction(name='v', grid=model.grid, time_order=2, space_order=space_order) f = Function(name='f', dimensions=(ufr.indices[0],), shape=(nfreq,)) f.data[:] = freq[:] gradient = Function(name="gradient", grid=model.grid) vlaplace, rho = acoustic_laplacian(v, rho) # Set up PDE and rearrange stencil = damp * (2.0 * v - damp * v.forward + dt**2 * rho / m * vlaplace) expression = [Eq(v.backward, stencil)] # Data at receiver locations as adjoint source rec = Receiver(name='rec', grid=model.grid, ntime=nt, coordinates=rec_coords) rec.data[:] = rec_data[:] adj_src = rec.inject(field=v.backward, expr=rec * dt**2 / m) # Gradient update if isic is True: if len(model.shape) == 2: gradient_update = [Eq(gradient, gradient + (2*np.pi*f)**2*ntf*(ufr*cos(2*np.pi*f*tsave*dtf) - ufi*sin(2*np.pi*f*tsave*dtf))*v*model.m - (ufr.dx*cos(2*np.pi*f*tsave*dtf) - ufi.dx*sin(2*np.pi*f*tsave*dtf))*v.dx*ntf - (ufr.dy*cos(2*np.pi*f*tsave*dtf) - ufi.dy*sin(2*np.pi*f*tsave*dtf))*v.dy*ntf)] else: gradient_update = [Eq(gradient, gradient + (2*np.pi*f)**2*ntf*(ufr*cos(2*np.pi*f*tsave*dtf) - ufi*sin(2*np.pi*f*tsave*dtf))*v*model.m - (ufr.dx*cos(2*np.pi*f*tsave*dtf) - ufi.dx*sin(2*np.pi*f*tsave*dtf))*v.dx*ntf - (ufr.dy*cos(2*np.pi*f*tsave*dtf) - ufi.dy*sin(2*np.pi*f*tsave*dtf))*v.dy*ntf - (ufr.dz*cos(2*np.pi*f*tsave*dtf) - ufi.dz*sin(2*np.pi*f*tsave*dtf))*v.dz*ntf)] else: gradient_update = [Eq(gradient, gradient + (2*np.pi*f)**2/nt*(ufr*cos(2*np.pi*f*tsave*dtf) - ufi*sin(2*np.pi*f*tsave*dtf))*v)] # Create operator and run # Free surface if free_surface is True: expression += freesurface(v, space_order//2, model.nbpml, forward=False) expression += adj_src + gradient_update subs = model.spacing_map subs[v.grid.time_dim.spacing] = dt op = Operator(expression, subs=subs, dse='advanced', dle='advanced') cf = op.cfunction op() clear_cache() return gradient.data