################################### Create Readme #################################### def plot_titles(titles): return '\n' + "## " + titles[0] + '\n' list_types = [["Classics", "Classic"], ["Empirical Study", "Empirical"], ["Surveys", "Survey", "survey"], ["Influentials", "Influential"], ["New Settings or Metrics", "Setting", "Metric"], ["Regularization Methods", "Regularization"], ["Distillation Methods", "Distillation"], ["Rehearsal Methods", "Rehearsal"], ["Generative Replay Methods", "Generative Replay"], [ "Dynamic Architectures or Routing Methods", "Architectures", "Dynamic Architecture" ], ["Hybrid Methods", "Hybrid"], ["Continual Few-Shot Learning", "Continual-Meta Learning"], ["Meta-Continual Learning"], ["Lifelong Reinforcement Learning", "Reinforcement"], ["Continual Generative Modeling", "Generative Modeling"], ["Applications"], ["Thesis"], ["Libraries", "Library"], ["Workshops", 'Workshop']] generate_md_file(DB=bib_db, list_classif=list_types, key="keywords", plot_title_fct=plot_titles, filename="README.md", add_comments=True)
conferences_list = [["ICLR", "International Conference on Learning Representations"], ["CVPR", "Conference on Computer Vision and Pattern Recognition"], ["ICCV", "International Conference on Computer Vision"], ["ECCV", "European Conference on Computer Vision"], ["NeuriPS", "NIPS", "Neural Information Processing Systems"], ["ICML", "International Conference on Machine Learning"], ["IJCAI", "International Joint Conference on Artificial Intelligence"], ["IJCNN", "International Joint Conference on Neural Networks"], ["ICANN", "International Conference on Artificial Neural Networks"]] output_file = os.path.join("Mardown_Files", "Conferences_Bibliography.md") generate_md_file(DB=bib_db, list_classif=conferences_list, key="booktitle", plot_title_fct=plot_conf_title, filename=output_file, url=repository_url, bibfile=bibfile_name, add_comments=False) ################################### SORT BY AUTHORS #################################### def plot_years_title(year): return '\n' + "## Papers in " + year[0] + '\n' years = [] for i in range(1950, 2021): years.append([str(i)]) years.reverse()