'imsize' : 128,# Spatial size of training images. All images will be resized to this size during preprocessing. 'nc' : 3,# Number of channles in the training images. For coloured images this is 3. 'nz' : 200,# Size of the Z latent vector (the input to the generator). 'ngf' : 128,# Size of feature maps in the generator. The depth will be multiples of this. 'ndf' : 128, # Size of features maps in the discriminator. The depth will be multiples of this. 'nepochs' : 1,# Number of training epochs. 'lr' : 0.0002,# Learning rate for optimizers 'beta1' : 0.5,# Beta1 hyperparam for Adam optimizer 'save_epoch' : 2}# Save step. # Use GPU is available else use CPU. device = torch.device("cuda:0" if(torch.cuda.is_available()) else "cpu") print(device, " will be used.\n") # Get the data. dataloader = get_celeba(params) # Plot the training images. sample_batch = next(iter(dataloader)) plt.figure(figsize=(8, 8)) plt.axis("off") plt.title("Training Images") plt.imshow(np.transpose(vutils.make_grid( sample_batch[0].to(device)[ : 64], padding=2, normalize=True).cpu(), (1, 2, 0))) plt.show() checkpoint =torch.load('./model/model_final.pth') # Create the generator. netG = Generator(params).to(device)
'ngf': 64, # Size of feature maps in the generator. The depth will be multiples of this. 'ndf': 64, # Size of features maps in the discriminator. The depth will be multiples of this. 'nepochs': 10, # Number of training epochs. 'lr': 0.0002, # Learning rate for optimizers 'beta1': 0.5, # Beta1 hyperparam for Adam optimizer 'save_epoch': 2 } # Save step. # Use GPU is available else use CPU. device = torch.device("cuda:0" if (torch.cuda.is_available()) else "cpu") print(device, " will be used.\n") # Get the data. true_dataloader, masked_dataloader = get_celeba(params) ''' # Plot the training images. sample_batch = next(iter(dataloader)) plt.figure(figsize=(8, 8)) plt.axis("off") plt.title("Training Images") plt.imshow(np.transpose(vutils.make_grid( sample_batch[0].to(device)[ : 64], padding=2, normalize=True).cpu(), (1, 2, 0))) plt.show() ''' # Create the generator. netG = Generator(params)